

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks

Jack H. Winters

May 31, 2004 jwinters@motia.com

Slide 1

Monday, May 31, 2004

Outline

- Service Limitations
- Smart Antennas
- Ad Hoc Networks
- Smart Antennas in Ad Hoc Networks
- Conclusions

Service Limitations

- Quality of service for each user is not consistent:
 - Too far away from the access point
 - Behind a wall
 - In a "dead" spot
 - Working off a battery, as with a laptop
 - Suffering from low bandwidth due to range/interference
- Lack of range
 - One AP cannot cover some houses

Solutions

- Smart Antennas
 - Can be implemented today (further improvement with standards in future 802.11n)
- Ad Hoc Networks
 - Interconnections of multiple clients (standardization in progress – 802.11mes SG)
- Combination of Smart Antennas with Ad Hoc Networks can give greater gains than the sum of the two

EMOTIA WIRELESS SYSTEM IMPAIRMENTS

Wireless communication systems are limited in performance and capacity by:

Limited Spectrum

Rayleigh Fading

Smart Antennas

ΞN otia Switched Multibeam Antenna Adaptive Antenna Array SIGNAL SIGNAL AMFORMER BEAM SIGNAL SIGNAL OUTPUT SELECT OUTPUT INTERFERENCE BEAMFORMER INTERFERENCE WEIGHTS

Smart antenna is a multibeam or adaptive antenna array that tracks the wireless environment to significantly improve the performance of wireless systems. Multibeam less complex, but applicable mainly outdoors, while:

Adaptive arrays in any environment provide:

- Antenna gain of M
- Suppression of M-1 interferers

In a multipath environment, they also provide:

- M-fold multipath diversity gain
- With M TX antennas (MIMO), M-fold data rate increase in same channel with same total transmit power

ANTENNA DIVERSITY

Multiple antenna elements with received signals weighted and combined

With multipath, diversity gain requires independent fading:

- $\lambda/4$ spacing
- Direction
- Polarization

EMOTIA ANTENNA AND DIVERSITY GAIN

Antenna Gain: Increased average output signal-to-noise ratio

- Gain of *M* with *M* antennas
- Narrower beam with $\lambda/2$ -spaced antenna elements

Diversity Gain: Decreased required receive signal-to-noise ratio for a given BER averaged over fading

- Depends on BER - Gain for *M*=2 vs. 1:

•5.2 dB at 10⁻² BER

•14.7 dB at 10⁻⁴ BER

- Decreasing gain increase with increasing M - 10⁻² BER:

•5.2 dB for *M*=2

•7.6 dB for *M*=4

•9.5 dB for $M=\infty$

- Depends on fading correlation

• Antenna diversity gain may be smaller with RAKE receiver in CDMA

DIVERSITY TYPES

Spatial: Horizontal separation

- Correlation depends on angular spread

- Only ¼ wavelength needed at terminal (10 wavelengths on base station)

Polarization: Dual polarization (doubles number of antennas in one location)

- Low correlation
- Horizontal receive 6-10 dB lower than vertical with vertical transmit and LOS

DIVERSITY TYPES (cont.)

Angle: Adjacent narrow beams with switched beam antenna

- Low correlation typical
- 10 dB lower signal in weaker beam, with small angular spread

Pattern: Allows even closer than ¹/₄ wavelength

- \Rightarrow 4 or more antennas on a PCMCIA card
- \Rightarrow 16 on a handset
- \Rightarrow Even more on a laptop

COMBINING TECHNIQUES

- Select antenna with the highest received signal power
- $P_{0M} = P_0^M$

Maximal ratio combining:

- Weight and combine signals to maximize signal-to-noise ratio (Weights are complex conjugate of the channel transfer characteristic)
- Optimum technique with noise only
- $BER_M \approx BER^M$ (*M*-fold diversity gain)

EMOTIA OPTIMUM COMBINING (ADAPTIVE ANTENNAS)

• Weight and combine signals to maximize signal-tointerference-plus-noise ratio (SINR)

- Usually minimize mean squared error (MMSE)
- Utilizes correlation of interference at the antennas to reduce interference power
- Same as maximal ratio combining when interference is not present

Utilizes spatial dimension of radio environment to:

- Maximize signal-to-interference-plus-noise ratio
- Increase gain towards desired signal
- Null interference: M-1 interferers with M antennas

Antenna pattern is meaningless, but performance is based on the number of signals, not number of paths (without delay spread).

=> A receiver using adaptive array combining with *M* antennas and *N*-1 interferers can have the same performance as a receiver with M-N+1 antennas and no interference, i.e., can null *N*-1 interferers with M-N+1 diversity improvement (*N*-fold capacity increase).

- With M transmit and M receive antennas, can provide M independent channels, to increase data rate M-fold with no increase in total transmit power (with sufficient multipath) only an increase in DSP
 - Indoors up to 150-fold increase in theory
 - Outdoors 8-12-fold increase typical
- Measurements (e.g., AT&T) show 4x data rate & capacity increase in all mobile & indoor/outdoor environments (4 TX and 4 RX antennas)
 - 216 Mbps 802.11a (4X 54 Mbps)
 - 1.5 Mbps EDGE
 - 19 Mbps WCDMA

Slide 16

Practical Issues

Interferers

• # interferers >> M

But:

- Only need to suppress interference into the noise (not eliminate)
- Usually only 1 or 2 dominant interferers

Result:

• Substantial increase in performance and capacity even with a few (even 2) antennas

Note:

• Optimum combining yields interference suppression under all conditions (e.g., line-of-sight, Rician fading)

Delay Spread

Channel Model D - 802.11n

Figure 1. Model D delay profile with cluster extension (overlapping clusters).

Slide 18

EQUALIZATION

- Delay spread: Delay spread over [(M-1)/2]T or M-1 delayed signals (over any delay) can be eliminated
- Typically use temporal processing with spatial processing for equalization:

• Spatial processing followed by temporal processing has degradation, but this degradation can be small in many cases

Wireless System Enhancements

• Key enhancement technique to increase system capacity, extend coverage, and improve user experience in cellular (IS-136)

Smart Antennas can significantly improve the performance of WLANs

- TDD operation (only need smart antenna at access point or terminal for performance improvement in both directions)
- Higher antenna gain ⇒ Extend range/ Increase data rate/ Extend battery life
- Multipath diversity gain ⇒ Improve reliability
- Interference suppression \Rightarrow Improve system capacity and throughput
 - Supports aggressive frequency re-use for higher spectrum efficiency, robustness in the ISM band (microwave ovens, outdoor lights)
- Data rate increase ⇒ M-fold increase in data rate with M TX and M RX antennas (MIMO 802.11n)

Performance Gain over a Single Antenna in a Rayleigh Fading Channel

2 Antenna	Adaptive	Adaptive	Theoretical Bound	
Selection	One Side	Both Sides	Both Sides	
6.1 dB	12.8 dB	18.0 dB	22.2 dB	

2X to 3X Range + Uniform Coverage 3X to 4X Range + Uniform Coverage

Slide 23

Beamforming Gain (dB) @ 10% PER									
	6 Mbps		24 Mbps		54 Mbps				
	Short Packet	Long Packet	Short Packet	Long Packet	Short Packet	Long Packet	Summary		
Flat Rayleigh Fading	11	11	12	12	12	12	11 ~ 12		
50ns Exp Decay Rayleigh Fading	8	10	7	7	8	9	7 ~ 10		
100ns Exp Decay Rayleigh Fading	6	6	5	5	6	7	5 ~ 7		
200ns Exp Decay Rayleigh Fading	4	9	5	6	Very High Error Floor	Very High Error Floor	4 ~ 9		

Network Simulation Assumptions

- One AP, 10 users in random locations
- Poisson traffic with fixed data length (1.5Kbytes)
- RTS/CTS operation
- TCP/IP default transmission
- Smart antenna used at AP only

Network Simulation Results

Performance Comparison - Scenario#1

Network Simulation Results

Performance Comparison - Scenario#2

4-Antenna WLAN Smart Antenna Value Proposition

- Extends Range by 200% by 300%
- Facilitates Enhanced Radio Resource Management
- Improves Wireless Network Security
- Potentially Reduces Client Transmit Power by 90%
- Increases Data Throughput by 100% 200%
 (802.11n in future with >600% increase)

802.11n

- Requirements for 802.11n:
 - >100 Mbps in MAC
 - >3 bits/sec/Hz
 - Backward compatible with all 802.11 standards
- Requires MAC changes and MIMO:
 - 4TX/RX antennas (or maybe 2-3)
- Next standards meeting in Portland

Smart Antennas

- Adaptive MIMO
 - Adapt among:
 - antenna gain for range extension/better coverage/battery life increase
 - interference suppression for capacity (with frequency reuse)
 - MIMO for data rate increase (without any increase in total transmit power), e.g., with 4 antennas at access point and terminal, in 802.11a have the potential to provide up to 216 Mbps in 20 MHz bandwidth (802.11n)
 - Can be selectively implemented on nodes

Appliqué

- Cellular IS-136
- WLANs 802.11a/b/g
- WiMAX 802.16

Progression for WLAN/WiMAX/Cellular

- Smart antennas for 802.11 APs/clients
- Cellphones, PDAs, laptops with integrated WLAN/WiMAX/cellular
- Smart antennas for both WLAN/WiMAX and cellular in these devices
- MIMO in WLANs (802.11n), with MIMO in cellular (base stations)
- Seamless roaming with WLANs/cellular (WiMAX, 802.20)

Mobile Ad Hoc Networks

- Network of wireless hosts which may be mobile
- No pre-existing infrastructure
- Multiple hops for routing
- Neighbors and routing changes with time (mobility, environment)

Advantages

- Less transmit power needed (longer battery life)
- Easy/fast to deploy
- Infrastructure is not important
- Possible reuse of frequency for higher capacity
- Applications:
 - Home networking
 - Military/emergency environments
 - Meetings/conventions

Mixture of users: equipment/requirements (symmetric/asymmetric)

• MAC/routing

- Limited transmission range
- Fading
- Packet losses
- Changes in routing/neighbors due to movement
- Power
- Broadcast nature of environment
 - Hidden Node
 - Frequency reuse limits

Hidden Node Issue

Nodes A and B, B and C can communicate, but A and C cannot hear each other and potentially collide at B

Slide 36

MAC Solutions

- Many solutions (not covered here)
- On method (802.11) (DCF):
 - Request-to-send
 - Clear-to-send
 - Data
 - Acknowledgement

- Most systems today use omni-directional antennas
 - Since this reserves the spectrum over a large area, network capacity is wasted
- Consider smart antenna advantages:
 - Directional antennas (multi-beam and scanning beam)
 - Main emphasis of literature
 - Considered easier/less costly to implement
 - Easier to study/analyze
 - Adaptive arrays
- Since smart antennas are a physical layer technique, existing approaches for MAC/routing in ad hoc networks will work with smart antennas, but these MAC/routing techniques need to be modified to achieve the full benefit (e.g., the 802.11 MAC has inefficiencies with directional antennas)

Directional Antenna Advantages

Directional Antenna Advantages

- Greater frequency reuse:
 - Use of Directional MAC
 - Transmit RTS with directional beam, receive with omnidirectional antenna
 - Send CTS (Data/ACK) with directional beam
 - Increases range/reduces battery power
 - Increases frequency reuse/network connectivity/link lifetime

- Still have hidden node problem (worsened by asymmetry in gain)
- Loss of RX gain for RTS
- Scanning of RTS
- Movement (increased range can cause association problems)
- Many environments are not LOS
 - Fading can dominate over propagation loss
 - DoA not a good indicator of location of user
 - Interference into many/all beams
 - Loss of array gain

- Still have hidden node problem (worsened by asymmetry in gain)
 - Can suppress up to M-1 interferers with M antennas
 - Independent of environment
 - Can utilize to determine if ok to send even with interference (if #interferers<M-1)
- Loss of RX gain for RTS
 - Can receive omni-directionally (use just one antenna), but can adapt to maximum gain on preamble (microseconds)
 - 13 dB gain with 4 antennas in 802.11/WiMAX
- Scanning of RTS
 - RTS sent omni-directionally reduces chance of interference
 - gain on TX is reduced 5-6 dB loss (13 vs. 18 dB for 802.11)

- Movement (increased range can cause association problems)
 - Still an issue for adaptive arrays
 - May be even worse as tracking of fading (at Doppler rate) can mean loss of link in milliseconds
- Many environments are not LOS
 - Adaptive arrays work fine in NLOS
 - Fading can dominate over propagation loss
 - Adaptive arrays provide multipath mitigation as well as full array gain
 - DoA not a good indicator of location of user
 - DoA not used in adaptive arrays
 - Interference into many/all beams
 - Adaptive array can suppress up to M-1 interferers
 - Loss of array gain
 - Full array gain with adaptive arrays

- Cost/Complexity:
 - In 802.11
 - Adaptive arrays can easily be added as appliqué to selected nodes
 - With 802.11n, 2-4 antennas (adaptive array) with MRC, interference suppression, and MIMO will be available
 - TDD can beamform on transmit based on received signal without DoA information
 - 802.11mes SG to study ad hoc networks and 802.11n MAC is to be defined
 - In WiMAX, multiple antennas likely (in standard), and TDD mode most used
 - In UWB, multiple antennas are possible (particularly in OFDM (MBOA) mode along the lines of 802.11)

- Can use MIMO for increased capacity (shorter transmit time), along with adaptive MIMO (range extension/power reduction and interference suppression)
- Rather than direction for excluded area for transmission, use number of interferers (<M-1) as criteria

Conclusions

- Both smart antennas and ad hoc networks can provide increased capabilities/performance to wireless networks (range, robustness, battery life, capacity)
- Combination of smart antennas and ad hoc networks can provide gains that are greater than the sum of the gains, but only if used properly
- Further research is needed (with standards development), but the potential is substantial