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Service Limitations

• Quality of service for each user is not 
consistent:
– Too far away from the access point
– Behind a wall
– In a “dead” spot
– Working off a battery, as with a laptop
– Suffering from low bandwidth due to

range/interference

• Lack of range
– One AP cannot cover some houses
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Solutions

• Smart Antennas
– Can be implemented today (further 

improvement with standards in future –
802.11n) 

• Ad Hoc Networks
– Interconnections of multiple clients 

(standardization in progress – 802.11mes SG)

• Combination of Smart Antennas with Ad 
Hoc Networks can give greater gains 
than the sum of the two
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WIRELESS SYSTEM IMPAIRMENTS
Wireless communication systems are limited in 
performance and capacity by:

Delay 
Spread CoChannel 

Interference

Rayleigh 
Fading

Limited Spectrum
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Smart Antennas
Adaptive Antenna ArraySwitched Multibeam Antenna

Smart antenna is a multibeam or adaptive antenna array that tracks the wireless environment to 
significantly improve the performance of wireless systems. Multibeam less complex, but applicable 
mainly outdoors, while:

Adaptive arrays in any environment provide:
• Antenna gain of M

• Suppression of M-1 interferers

In a multipath environment, they also provide:
• M-fold multipath diversity gain

• With M TX antennas (MIMO), M-fold data rate increase in same  channel with same total transmit power
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ANTENNA  DIVERSITY

Multiple antenna elements with received signals weighted and 
combined

USER

ANTENNA 1

ANTENNA 2

ANTENNA M

∑ OUTPUT
SIGNAL

With multipath, diversity gain requires independent fading:

• λ/4 spacing

• Direction

• Polarization
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ANTENNA AND DIVERSITY GAIN
Antenna Gain: Increased average output signal-to-noise ratio

- Gain of M with M antennas

- Narrower beam with λ/2-spaced antenna elements

Diversity Gain: Decreased required receive signal-to-noise ratio for a given BER averaged over 
fading

- Depends on BER - Gain for M=2 vs. 1:

•5.2 dB at 10-2 BER

•14.7 dB at 10-4 BER

- Decreasing gain increase with increasing M - 10-2 BER:

•5.2 dB for M=2

•7.6 dB for M=4

•9.5 dB for M=∞

- Depends on fading correlation

• Antenna diversity gain may be smaller with RAKE receiver in CDMA
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DIVERSITY TYPES

Spatial: Horizontal separation

- Correlation depends on angular spread

- Only ¼ wavelength needed at terminal (10 
wavelengths on base station)

Polarization: Dual polarization (doubles number of antennas in 
one location)

- Low correlation

- Horizontal receive 6-10 dB lower than vertical with 
vertical transmit and LOS
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DIVERSITY TYPES 
(cont.)

Angle: Adjacent narrow beams with switched beam antenna

- Low correlation typical

- 10 dB lower signal in weaker beam, with small angular 
spread

Pattern: Allows even closer than ¼ wavelength

⇒ 4 or more antennas on a PCMCIA card

⇒ 16 on a handset

⇒ Even more on a laptop
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COMBINING TECHNIQUES

Selection:

Output

• Select antenna with the highest received signal power

• P0M = P0
M
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COMBINING TECHNIQUES (CONT.)

Maximal ratio combining:

W1

WM

∑ Output

• Weight and combine signals to maximize signal-to-noise ratio (Weights 
are complex conjugate of the channel transfer characteristic)

• Optimum technique with noise only

• BERM ≈ BERM (M-fold diversity gain)



Monday, May 31, 2004Slide  13

OPTIMUM COMBINING (ADAPTIVE 
ANTENNAS)

• Weight and combine signals to maximize signal-to-
interference-plus-noise ratio (SINR)

- Usually minimize mean squared error (MMSE)

• Utilizes correlation of interference at the antennas to 
reduce interference power

• Same as maximal ratio combining when interference is 
not present
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INTERFERENCE NULLING
Line-Of-Sight Systems

User 1

User 2

∑ User 1 
Signal•

•
•

Utilizes spatial dimension of radio environment to:
• Maximize signal-to-interference-plus-noise ratio
• Increase gain towards desired signal
• Null interference: M-1 interferers with M antennas
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INTERFERENCE NULLING
Multipath Systems

User 1

User 2

∑•
•
•

Antenna pattern is meaningless, but performance is based on the number of 
signals, not number of paths (without delay spread).

User 1 
Signal

=> A receiver using adaptive array combining with M antennas and N-1 interferers can 
have the same performance as a receiver with M-N+1 antennas and no interference, i.e., 
can null N-1 interferers with M-N+1 diversity improvement (N-fold capacity increase).
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Multiple-Input Multiple-Output (MIMO) Radio

• With M transmit and M receive antennas, can provide M independent channels, to increase data rate M-
fold with no increase in total transmit power (with sufficient multipath) – only an increase in DSP

– Indoors – up to 150-fold increase in theory
– Outdoors – 8-12-fold increase typical

• Measurements (e.g., AT&T) show 4x data rate & capacity increase in all mobile & indoor/outdoor 
environments (4 TX and 4 RX antennas) 

– 216 Mbps 802.11a (4X 54 Mbps)
– 1.5 Mbps EDGE
– 19 Mbps WCDMA 
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Practical Issues

Interferers

• # interferers >> M

But:

• Only need to suppress interference into the noise (not eliminate)

• Usually only 1 or 2 dominant interferers 

Result:

• Substantial increase in performance and capacity even with a few (even 2) 
antennas

Note:

• Optimum combining yields interference suppression under all conditions 
(e.g., line-of-sight, Rician fading)



Monday, May 31, 2004Slide  18

Delay Spread
Channel Model D – 802.11n
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Figure 1. Model D delay profile with cluster extension (overlapping clusters).
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EQUALIZATION

• Delay spread: Delay spread over [(M-1) / 2]T or M-1 delayed signals 
(over any delay) can be eliminated

• Typically use temporal processing with spatial processing for 
equalization:

LE

LE
MLSE/DFE∑

• Spatial processing followed by temporal processing has degradation, 
but this degradation can be small in many cases



Monday, May 31, 2004Slide  20

Wireless System Enhancements
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100 kbps

1 Mbps

10 Mbps

100 Mbps

2G/3G Wireless
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Range
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Smart Antennas for IS-136

Downlink Switched Beam Antenna

INTERFERENCE

SIGNAL

SIGNAL
OUTPUT

BEAMFORMER
WEIGHTS

Uplink Adaptive Antenna
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BEAM
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• Key enhancement technique to increase system capacity, extend coverage, and 
improve user experience in cellular  (IS-136)

In 1999, combining at TDMA base stations changed 
from MRC to MMSE for capacity increase 
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Smart Antennas for WLANs

APSmart
Antenna

Interference

AP

Smart
Antenna

Smart
Antenna

Smart Antennas can significantly improve the performance of WLANs
• TDD operation (only need smart antenna at access point or terminal for performance 

improvement in both directions)
• Higher antenna gain ⇒ Extend range/ Increase data rate/ Extend battery life
• Multipath diversity gain ⇒ Improve reliability
• Interference suppression ⇒ Improve system capacity and throughput

– Supports aggressive frequency re-use for higher spectrum efficiency, robustness in the ISM 
band (microwave ovens, outdoor lights)

– Data rate increase ⇒ M-fold increase in data rate with M TX and M RX antennas (MIMO 
802.11n)
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802.11b Beamforming Gains with 4 Antennas

Performance Gain over a Single Antenna in a 
Rayleigh Fading Channel

2 Antenna 
Selection

Adaptive
One Side

Adaptive
Both Sides

Theoretical Bound 
Both Sides

6.1 dB 12.8 dB 18.0 dB 22.2 dB

2X to 3X Range + 
Uniform Coverage

3X to 4X Range + 
Uniform Coverage
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802.11a/g Beamforming Performance Summary

Beamforming Gain (dB) @ 10% PER

6 Mbps

Flat Rayleigh Fading

50ns Exp Decay Rayleigh 
Fading

100ns Exp Decay Rayleigh 
Fading

200ns Exp Decay Rayleigh 
Fading

Short Packet

11

8

6 6 5 5 6 7 5 ~ 7

4 9 5 6 Very High Error 
Floor 4 ~ 9

24 Mbps 54 Mbps

Long Packet

Summary

12

9

Long Packet Short 
Packet Long Packet Short Packet

11 12 12 12 11 ~ 12

10 7 7 8 7 ~ 10

Very High 
Error Floor
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Network Simulation Assumptions

AP#1

Scenario#1

users AP#2

Scenario#2

users

• One AP, 10 users in random locations
• Poisson traffic with fixed data length (1.5Kbytes)
• RTS/CTS operation
• TCP/IP default transmission
• Smart antenna used at AP only
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Network Simulation Results

Performance Comparison - Scenario#1
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Network Simulation Results

Performance Comparison - Scenario#2
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4-Antenna WLAN Smart Antenna Value 
Proposition

• Extends Range by 200% by 300%

• Facilitates Enhanced Radio Resource Management

• Improves Wireless Network Security

• Potentially Reduces Client Transmit Power by 90%

• Increases Data Throughput by 100% - 200%
(802.11n in future with >600% increase)
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802.11n

• Requirements for 802.11n:
– >100 Mbps in MAC
– >3 bits/sec/Hz
– Backward compatible with all 802.11 standards

• Requires MAC changes and MIMO:
– 4TX/RX antennas (or maybe 2-3)

• Next standards meeting in Portland
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Smart Antennas

• Adaptive MIMO
– Adapt among:

• antenna gain for range extension/better coverage/battery 
life increase

• interference suppression for capacity (with frequency 
reuse)

• MIMO for data rate increase (without any increase in total 
transmit power), e.g., with 4 antennas at access point and 
terminal, in 802.11a have the potential to provide up to 216 
Mbps in 20 MHz bandwidth (802.11n)

– Can be selectively implemented on nodes
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Appliqué
- Cellular – IS-136
- WLANs – 802.11a/b/g
- WiMAX – 802.16

RF

Processor

Baseband/MAC

Processor

(including 
temporal 

equalization),

Host Interface

Wireless 
Transceiver

RF 
Appliqué

(Spatial 
processing 

only)



Monday, May 31, 2004Slide  32

Progression for 
WLAN/WiMAX/Cellular

• Smart antennas for 802.11 APs/clients
• Cellphones, PDAs, laptops with integrated 

WLAN/WiMAX/cellular
• Smart antennas for both WLAN/WiMAX and cellular in these 

devices
• MIMO in WLANs (802.11n), with MIMO in cellular (base stations)
• Seamless roaming with WLANs/cellular (WiMAX, 802.20)
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Mobile Ad Hoc Networks

• Network of wireless hosts which may be mobile
• No pre-existing infrastructure
• Multiple hops for routing
• Neighbors and routing changes with time (mobility, environment)
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Advantages

• Less transmit power needed (longer battery life)
• Easy/fast to deploy
• Infrastructure is not important
• Possible reuse of frequency for higher capacity
• Applications:

– Home networking
– Military/emergency environments
– Meetings/conventions
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Issues

• Mixture of users: equipment/requirements (symmetric/asymmetric )

• MAC/routing
– Limited transmission range
– Fading
– Packet losses
– Changes in routing/neighbors due to movement
– Power
– Broadcast nature of environment

• Hidden Node
• Frequency reuse limits
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Hidden Node Issue

A B C

Nodes A and B, B and C can communicate, 
but A and C cannot hear each other and 
potentially collide at B
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MAC Solutions

• Many solutions (not covered here)
• On method (802.11) (DCF):

– Request-to-send
– Clear-to-send
– Data
– Acknowledgement

A B C
RTS
CTS

DATA

ACK
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Impact of Smart Antennas

• Most systems today use omni-directional antennas
– Since this reserves the spectrum over a large area, network capacity is 

wasted

• Consider smart antenna advantages:
– Directional antennas (multi-beam and scanning beam)

• Main emphasis of literature
• Considered easier/less costly to implement
• Easier to study/analyze

– Adaptive arrays

• Since smart antennas are a physical layer technique, existing 
approaches for MAC/routing in ad hoc networks will work with smart 
antennas, but these MAC/routing techniques need to be modified to 
achieve the full benefit (e.g., the 802.11 MAC has inefficiencies with 
directional antennas) 
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Directional Antenna Advantages

• Greater gain (M-fold with M beams)
• Greater frequency reuse
• Topology control
• Increased connectivity
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Directional Antenna Advantages

• Greater frequency reuse:
– Use of Directional MAC

• Transmit RTS with directional beam, receive with omni-
directional antenna

• Send CTS (Data/ACK) with directional beam
– Increases range/reduces battery power
– Increases frequency reuse/network connectivity/link lifetime
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Issues for Directional Antennas

• Still have hidden node problem (worsened by asymmetry in 
gain)

• Loss of RX gain for RTS
• Scanning of RTS
• Movement (increased range can cause association problems)

• Many environments are not LOS
– Fading can dominate over propagation loss
– DoA not a good indicator of location of user
– Interference into many/all beams
– Loss of array gain
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Adaptive Arrays

• Still have hidden node problem (worsened by asymmetry in gain)
– Can suppress up to M-1 interferers with M antennas

• Independent of environment
• Can utilize to determine if ok to send even with interference (if 

#interferers<M-1)

• Loss of RX gain for RTS
– Can receive omni-directionally (use just one antenna), but can adapt to 

maximum gain on preamble (microseconds)
• 13 dB gain with 4 antennas in 802.11/WiMAX

• Scanning of RTS
– RTS sent omni-directionally reduces chance of interference

• gain on TX is reduced – 5-6 dB loss (13 vs. 18 dB for 802.11) 
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Adaptive Arrays

• Movement (increased range can cause association problems)
– Still an issue for adaptive arrays
– May be even worse as tracking of fading (at Doppler rate) can mean loss 

of link in milliseconds

• Many environments are not LOS
– Adaptive arrays work fine in NLOS
– Fading can dominate over propagation loss

• Adaptive arrays provide multipath mitigation as well as full array gain
– DoA not a good indicator of location of user

• DoA not used in adaptive arrays
– Interference into many/all beams

• Adaptive array can suppress up to M-1 interferers 
– Loss of array gain

• Full array gain with adaptive arrays
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Adaptive Arrays

• Cost/Complexity:
– In 802.11

• Adaptive arrays can easily be added as appliqué to selected nodes
• With 802.11n, 2-4 antennas (adaptive array) with MRC, interference 

suppression, and MIMO will be available
• TDD – can beamform on transmit based on received signal without 

DoA information
• 802.11mes SG to study ad hoc networks and 802.11n MAC is to be 

defined
– In WiMAX, multiple antennas likely (in standard), and TDD mode most 

used
– In UWB, multiple antennas are possible (particularly in OFDM (MBOA) 

mode along the lines of 802.11)
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Adaptive Arrays

• Can use MIMO for increased capacity (shorter transmit time), along 
with adaptive MIMO (range extension/power reduction and 
interference suppression)

• Rather than direction for excluded area for transmission, use 
number of interferers (<M-1) as criteria
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Conclusions

• Both smart antennas and ad hoc networks can provide 
increased capabilities/performance to wireless networks 
(range, robustness, battery life, capacity)

• Combination of smart antennas and ad hoc networks can 
provide gains that are greater than the sum of the gains, but 
only if used properly

• Further research is needed (with standards development), but 
the potential is substantial
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