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I.I.d. Rayleigh Fading Channels

Moe Z. Win, Senior Member, IEEENorman C. Beaulieurellow, IEEE Lawrence A. Shepp, Benjamin F. Logan, Jr.,
and Jack H. Winterd~ellow, IEEE

Abstract—Closed-form expressions that lower and upper bound view, it is useful to quantify the tradeoff between reduction in
the penalty of hybrid selection/maximal ratio combining relative complexity and loss in performance.

to maximal ratio combining (MRC) for M -ary phase-shift keying It is well known that the average SNR of MRC is equal to

(MPSK) modulations are proved. The bounds offer simple-to-eval-
uate explicit expressions, and are typically within 0.6 dB for hy- the sum of the average branch SNRs [10]. The performance of

brid systems with diversity order up to eight that use at least two H-S/MRC is less well understood. A long and complex anal-
branches, yet are independent of signal-to-noise ratio (SNR). Con- ysis giving the average SNR of H-S/MRC was presented in
trary to conclusions conjectured in a recently published paper, it [6]. A more concise and tractable analysis, based on a “vir-
is proved that the SNR penalty is not a constant, independent of tual branch technique,” which gives the variance of the SNR

SNR. It is also shown that previous estimates of the performance I th SNR ted in I81. Th
losses of selection diversity relative to MRC underestimate or lower as well as the average , was presented in [8]. The average

bound the losses for MPSK modulation systems, and that the true Symbol-error probability (SEP) of digital modulation schemes
loss can be significantly larger than previously believed. An upper using H-S/MRC was derived in [9]. However, the results require

bound to this loss is also obtained. evaluation of a double or single summation, each term of which
Index Terms—Diversity combining, error probability, fading ~requires a single numerical integration over a finite interval.

channels, hybrid selection/maximal ratio combining (H-S/MRC), In this paper, we derive simple lower and upper bounds for

maximal ratio combining (MRC), selection diversity (SD). the SEP performance of H-S/MRC used withary phase-shift

keying (MPSK) modulation. The bounds are derived by com-
paring the SEP performance of H-S/MRC with thafoforanch
) _ ) ) ~ MRC. Since H-S/MRC combines only out of N branches, it
RACTICAL considerations of diversity systems withincurs an SNR loss, or penalty, relative to MRC wherenll
~ reduced complexity for wireless communications havgranches are combined. The penalty is defined in an error-rate
given impetus to hybrid selection/maximal ratio combiningense as the increase in SNR required for hybrid combining to
(H-S/MRC) techniques [1]-[9]. In H-S/IMRC, the receivefychieve the same target SEP as MRC. It is to be expected that
selects thel. branches (fromV available diversity branches) this penalty is a function of the target SEP, and hence, a function
with largest signal-to-noise ratios (SNRs) for maximal ratigf gNR.
combining (MRC), offering complexity reduction with good The SNR penalty is rigorously lower and upper bounded.
performance and bridging the performance gap between selega hounds are useful not only because they are simple ex-
tion diversity (SD) and MRC. From a system design point gfjicit closed-form expressions, but also because they do not de-
pend on the average branch SNR and are valid for all values
of SNR. Thus, the SEP of H-S/MRC systems can be easily es-
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assessments underestimate or lower bound the performar 10
losses of SD relative to MRC with MPSK modulations. Fur-
thermore, we obtain an upper bound to this loss.

This paper is organized as follows. Section Il describe 10
the system model, recalls relevant diversity combining result
needed for the paper, and defines the system parameters. -
asymptotic SNR penalties are derived in Section Ill. Simpleg 107¢
bounds on the SNR penalty and the SEP are presented &
Section IV. Section V presents some numerical examples, alz
conclusions are given in Section VI. An asymptotic expansio £ 10°;
of the SEP valid for small SNR is derived in Appendix A. &
Useful mathematical inequalities are derived in Appendix Bz
and using them, the bounds are proved in Appendix C. 5o

lit;

Err

Il. DIVERSITY COMBINING ANALYSIS

In this section, the system model is presented. Some previo
results regarding diversity, needed for the development of th
paper, are also summarized.

s 3 o 1 3 5 7 5 1 51
S T (SNR per branch, dB
A. Preliminaries (SNR per branch, d8)
Throughout the papeiZ, a {1,2,...,L}, Zn a {1,2, Fig. 1. SEP for coherent detection of 4-PSK with H-S/MRC as a function of
N A average SNR per branch in decibelsf6r= 8 and varioud.. The curves depict
e 7AN}: andZy, ={L+1,L+2,...,N}.Whenevel. > N, [ —1 24 and8in successively lower positions.
Z¥ =0, i.e., the empty set. For eaghe Zy, let,; denote

the instantaneous SNR of thith diversity branch defined by wherecypsk = SinQ(W/M) and® — =(M —1)/M. A conve-

A 2 ; i
7i = a; Es[Noi, where2 E is the average symbol energy, is  pjant expression for the SEP of H-S/MRC given in [9] is
the instantaneous fading amplitude, &4,; is the two-sided
noise power spectral density of thth branch. We consider 1 /e [ sin2 0 r
0

the widely-used Rayleigh fading model for which the's P, ys/urc(l’) = = Y
are independent and identically distributed (i.i.d.) Rayleigh T cvpskl’ + sin” ¢

random variables (rv's), and thus, thgs are i.i.d. continuous [ sin2 @
nez¥

rv's, each with exponential probability density function (pdf)
and meard” = E{v}.

An H-S/MRC diversity system has instantaneous output SNR _ ) )
of the form The form of (3) is particularly tractable for further analysis and

we shall use it to derive the central results of this paper. Note
Vi — s (1) that SD and MRC are special cases of H—_S/MRC with= 1
HoS/MRE Z 1l andl = N, respectively. Substituting = N into (3), the SEP
for coherent detection of MPSK with MRC is obtained as

1 9. (3)

<2
CMPSKF% + sin“ 6

i€Z]

wherey; is the orderedy;, i.e., 1) > Y21 > -+ > ), N is

the number of available diversity branches, and L < N .1 1 /9 [ sin’ @ ]N
0

P vre(I) = p

(4)

empskl + sin? 6
B. SEP of H-S/MRC and MRC

The SEP for H-S/MRC in a slowly fading multipath envi- SNR Penalt
ronment is obtained by averaging the conditional SEP over tﬁé y
channel ensemble & = E,__ . {P{elm.s/urc}}. For The SEP versus average SNR per branch for coherent detec-
H-S/MRC . . . .
coherent detection of MPSK, the conditional SEP, denoted Bgn of MPSK with M = 4 (4-PSK) using H-S/MRC is plotted

Plelve. . is given (see, for example, [17]) b in Fig. 1 forL =1, 2, 4, and 8 withV = 8. The notation
telmespnc}. 159 ( ple, [17)) by H-L/N is used to denote H-S/MRC that selects and comhines

out of N branches. Note that H-1/1 is a single branch receiver,
and H1/N and HV/N are N-branch SD and MRC, respec-
tively. Since H-S/MRC combines onli branches, it incurs an
SNR loss, or penalty, relative to MRC where Allbranches are
combined. For a digital communication system, we define the
SNR penalty as the increase in SNR required by H-S/MRC to
achieve the same target SEPNasbranch MRC. That is

P{empsk|va-s/MRC

S}
/ 6_(CMPSK/Sin2 0)Vu-s /MR dé (2)

1
™ Jo

INote that the possibility of at least two equal;’s is excluded, since;) #
~1; almost surelyfor continuous rv'sy; [16]. P w-smre(B1) = Pemro(T) (5)
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where P. y-s/vre(2), Pemre(r), B, andT are the SEP of N, in which case they are trivially equal), a change of scale

H-S/MRC at SNRz, the SEP of MRC at SNR;, the SNR P, 5(I) = P. vre(B71T) results in the two functions, (')

penalty, and the average branch SNR, respectively. Note thatl P, 1_s/vrc(I) touching asymptotically. The asymptotic

the SNR penalty, in general, is a function of the target SEP, aBNR penaltys; is determined by the value gfsuch that

hence, a function of the average branch SNR; that is, 5(T").

Equation (5) defineg(I") implicitly. It can be rewritten to give P.s(T") = P, g-s/mrc(D). (11)

B(r) = %PF:I}I_S/MRC{PG,MRC(F)} (6) Substituting (9) and (10) into (11) gives (7a), which proves the

first half of Theorem 1 O

explicitly, whereP;}ll_S JMRO (z) is the inverse H-S/IMRC SEP Proof [Penalty for Asymptotically Large SNRNote that

function. Although the inverse function may be obtained numesince P, u-s/mrc(I') and P. vire(T) are both analytic, they

ically if we haveP, y_s,vre() inhand, the functio(-) isnot  each have a power series expansion in terms/ bfaboutl” =

known in closed-form. oo. Letb; i-s/mrc andb; vre, respectively, denote the power
Based on limited numerical results (binary modulations witkeries coefficients of. y_s/nvrc (') and Pe vre (1) in terms

L =2, N =3 and 4), a plausible conjecture was made iof 1/T" nearl’ = oo.

[11] that the SNR penalty of H-S/MRC relative to MRC is a Note that the first nonzero coefficients in the power series

constant, independent of SNR. It is stated that “this result éxpansion are

obvious from the numerical results, but certainly not obvious

from the analytical expressions.” (The analytical expressions " 1 e

are not used to prove this conclusion in [11].) Consider the SEP by 1-s/MRC = H - / [sin*V 6] d6 (12)

results for H-S/IMRC with H-4/8 and of MRC with H-8/8 in nezd L el Jo

Fig. 1. Inspection of Fig. 1 gives credence to this thinking, agd

the penaltyappearsnumerically to be constant; for example, 1 -© )

the SNR penalties for SEP values of P0and 10° are bNMRC = — /0 [sin®" 6] dé). (13)

graphically the same. In the next section, we present analytic
asymptotic penalties for small and large SNR for Alland Sinceby mre < by p-s/mrc for L < N (except forl = N,

N. 1t will be shown that though they are not equal, they ai@ which case they are trivially equal), a change of scale results
sometimes quite close, and hence, although the conjecturarpin Nth order “osculation” of the two functiong, (T') and

[11] is rigorously false, it may be a good approximation fop&H_S/MRC(F).z The asymptotic penaltys is the value of3
some cases. determined by théVth order “osculation” conditions, i.e.,

1. A sYMPTOTIC SNR FENALTIES bn,s = by H-S/MRC (14)

Theorem 1: The asymptotic SNR penalty for small and large . -
SNR, is given by whereb,, s denotes thesth power series coefficient @f. 5(I")

in terms of1/T" aboutl’ = oo. Equation (14) implies that

. [K(N,N)T?
o= |2 T2 Y e
'{( ) ) (/[U) . 9N _ ﬁ
[Sln 9] df = H
and sk Jo L
1/N nEZQ’
A N!
Bo =17~ (7b) o
L'L 1 . 9N
" [Sln 9] dg (15)
respectively, where(L, N) is defined to be Empsk™ Jo
| [ 5 L ) which results in (7b). This proves the second halfTbEorem
k(L,N) 2 _/ 1— [U_Z} H Luiz du. 1 . o
T Jo I+u nezN L +u Interestingly, one sees from (7a) and (7b) that the asymptotic
" ®) penalties are independent 8f for MPSK. When(L, N) =

(2,3), (B2, 88) = (0.5203dB,0.5870dB) and 3;* is close

Proof [Penalty for Asymptotically Small SNR]t can be to 3}, the difference being only 0.0667 dB. However, when
shown, using.emma Jgiven in Appendix A, that the asymptotic (L, N) = (2,8) one hag3{*, 3{}) = (2.5930dB, 3.1229dB)
expansion forP, y_s/yrc(l') and P, mre(I') for small I is and the difference is 0.5299 dB, clearly demonstrating that the
given, respectively, by penalty is not constant for all values of SNR.

While 3 and 38 provide useful information about the per-
— Kk(N,N)T'Y2 4 o(r/2)  (9) formance of H-S/IMRC, itis also important to assess the perfor-
mance of H-S/MRC for arbitrary SNR. General results valid for
_ m(L.N)Fl/z + 0(P1/2) (10) arbitrary SNR are presented in the next section and proved in
' subsequent sections.

wherer(-,-) is given by (8). Note thak(L, N) < #(N,N) 270 curves are said to be irth order “osculation” if their first: derivatives
for L < N. Since the inequality is strict (except fdr = (includingn = 0) are equal [18].

P.vre(T) =

3O 3|0

P u-s/mre(l) =
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IV. SIMPLE BOUNDS 10 . ‘ ! .
5 : -©— Upper Bound

— Exact

-{ =0— Lower Bound |§

—#- MRC

The following theorem states simple and explicit expressior ;2 F&gpe. .3
of lower and upper bounds for the SNR penalty of H-S/MR(
relative to MRC with MPSK modulations. 074 f

Theorem 2: Let #1, andfy be defined as

N o~
o2 (68) 2.
(oz)
nGZQr E 1070
and £
1N B
A N! 2
Pu = {ﬁ} (16b) E
I'L ol

respectively. The SNR penalty of H-S/MRC relative to MRC i<
lower and upper bounded by

pr < B() < Py (17)

for coherent detection of MPSK modulations. Equivalently, thr -3 0 I SNR per branch ‘;)B) 15 0
SEP of H-S/MRC is lower and upper bounded by '

Fig. 2. SEP for coherent detection of 4-PSK with H-S/MRC as a function of

P. vRrc Iy < P H-S/M ") < P. MRC 31 . average SNR per branch fof = 16. The upper and lower bounds are obtained
© ([L ) = TS/ ro(l') < © ([U )(18) from MRC results according tdheorem 2

6 T T T T T T T

Note thatgr, andfy in (16a) and (16b) do not depend on the : g
average branch SNR and, hence, the SNR penaltyboundsin (. ™[~ } TS Cowersound |
are valid for all values of average branch SNR. Note also thi sef- j .
Bu = 3. Using the SEP bounds in (18), the SEP of H-S/IMRC sl AR
at average branch SNR can be lower and upper bounded byg ™~ ; 5
the SEP of MRC operating, respectively, at SN(B{slf and §s.e» AP : ‘ .
BT, using previously published results on MRC. Note that a2
the difference betweef, and3;* is typically in the second or 3
third significant digit, little is lost by using the rigorous lower
bound, to assess the performance of a practical system.

The equivalence of (17) and (18) Theorem Zollows from
the definition of SNR penalty in (5), together with the fact thar 4
P. vire(+) is astrict monotonically decreasinfynction of its
argument. Therefore, in provingheorem 2it is sufficient to : : ;
prove either (17) or (18). In Appendix C, we give a proof of 4. = - =" L n = & o
the SEP bounds. To do this, we will need some mathematic._.. I (SNR per branch, dB)

inequalities, which we derive first in Appendix B.

SNR penalty of
S
© o
T T
1 1

o
T
L

T
L

Fig. 3. SNR penalty of H-S/MRC as a function of average SNR per branch for
(L,N) = (2,16).
V. EXAMPLES

We now illustrate how the SEP for H-S/MRC can be easilijﬂ Fig. 4. Note again that the SNR penalty is not a constant; it is
estimated using the results Biieorem 2Fig. 2 shows the exact Neither independent of the SNR nor the target SEP.
lower bound and upper bound of the SEP for coherent detecFigs. 3 and 4 also highlight an interesting result that merits
tion of 4-PSK using H-S/MRC witHL, N) = (2,16) and further discussion. I_Equatlon _(16a) gives, a Iower bound to
(L,N) = (8,16). The lower and upper bounds are obtainet€ penaltys(I'), while (7) gives the asymptotic, small SNR
from the SEP of 16-branch MRC operating at SNBlf and _penalty,ﬂf‘. The vaI_ueﬂL is also precisely the penalty defined
551F’ respectively. The exact SNR penaly]"), obtained by i th_e SNR sense (i.e, no_t in a target SEP_sense) of H-S/IMRC
numerically inverting the curves in Fig. 2, together with, 32 rejia_tlve to MRC [6], [8]. Itis clear frqm the flgu_res that though
andfy for the case of L, N) = (2, 16), is plotted as a function B; is very close tdy,, the two quantities are different, the dif-

of average branch SNR in Fig. 3 and as a function of target SEgsence between the two typically being in the second or third
significant figure. A test of the validity of this difference has

SFig. 2 shows the SEP as low as™H9 only to illustrate the asymptotic be- peen implemented as follows. A closed-form expression for the
haviors of the3(T"); these extremely low SEPs are not practical, especially f

wireless mobile communications. Similar comments apply to the ranges of %EP of BPSK with MRC is given by [19, p. 825, e_q' (14'4__15)]
rameters shown in Figs. 1 and 2. and a closed-form expression for the SEP of SD is found in [11,
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6 T T T T T T 9 T T T T T T
: pper Boun - : H
ﬁ Exact - BU of H-L/N
58 = L - ﬁl of H-L/N H-1/N
o~ Lower Bound 8 4

o
=]
T
1

SNR penalty of H-S/MRC [dB]
> o o
© o N >

T T T T

»
)
T

SNR Penalty of H-S/MRC [dB]
>

>
IS
T

e
IS}
T
I

BH-8/N

1
10 10 1072 107 107° 107

Target Symbol Error Probability (SEP) oF -~

Fig. 4. SNR penalty of H-S/MRC as a function of target SEP(for N') = -1 ; i i
(2,16). 0 2 4 6

Z oo

T ‘ T Fig. 6. Lower and upper bounds for the SNR penalty aE 4V as a function
: of IV for variousL.
: <& BL of H-(N-1)/N

1.6 y T . T T T T
-8 H-1/N : : : : :
— H-L/N

SNR Penally of H-S/MRC [dB]
o s
ES o
T
—_
o

By B (48]

02l : : T

o
=N

04F - et

Fig. 5. Penalty incurred by dropping one branch in an H-S/MRC diversity

system.
02

ed. (18)]. Using these, we have calculated the small SNR asymj
tote for (L, N) = (1, N), N = 2,3,...,8, and16. The results
of this test agree witl#;* as previously determined.

Table I shows3, andﬁé for all valid values of L, N) < 12.  Fig.7. Ratiody /3. in dB as a function of\" for variousL. Highest curve is
It is clear thatfy, provides an excellent approximation[f@ in forL =1, andL decreases monotonically to the lowest curve itk 16.
these cases. The values fér and 8y can be tabulated using

simple formulas given in (16a) and (16b). Table Il gives somgq penalty of HEN — 1)/N decreases a¥ increases. A knee
representative values of the lower and upper bounds on the SNRe penalty curve occurs aroudd = 4 and the penalty is
penalty. The maximum difference between the bounds is 1§85 than 0.3123 dB faV > 4.

than 0.85 dB forz < L < N < 12. Thus, the geometric tpe SNR penalty of SD relative to MRC is lower and upper

mean of the two bounds gives a result that is accurate to withjg,nded by settind. = 1 in (16a) and (16b), respectively, to
+0.43 dB for the cases in Table II. As expected, it can be segpain ’ '

from Table Il that for a givenV, the penalty decreases &as

increases. Also as expected, for a giverthe penalty increases BLsp = N (19a)
asN increases. Itis also to be expected that the penalty incurred ’ > %
by dropping one of the diversity branches (ie+ N — 1) will n€Zy

decrease and become negligibleMsncreases. This behaviorand
is exhibited in Fig. 5, which quantitatively shows how rapidly Busp = {NI}/~. (19b)
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TABLE |
LOWER BOUNDS AND ASYMPTOTIC VALUES { S}; } OF THESNR RENALTY IN DECIBELS
"L

N
L 3 4 5 6 7 8 9 10 11 12

0.5115 1.0146 1.4671 1.8709 2.2333 2.5613 2.8605 3.1355 3.3898 3.6264

2
0.5203 1.0312 1.4894 1.8973 2.2628 2.5930 2.8938 3.1701 3.4254 3.6627
0 0.2803 0.6048 0.9241 1.2258 1.5077 1.7704 2.0156 2.2451 2.4606

3
0 0.2832 0.6116 0.9342 1.2388 1.5230 1.7876 2.0343 2.2650 2.4815
0 0.1773 0.4043 0.6420 0.8764 1.1023 1.3179 1.5230 1.7180

4
0 0.1786 0.4076 0.6473 0.8837 1.1112 1.3283 1.5347 1.7307
0 0.1223 0.2901 0.4741 0.6616 0.8470 1.0274 1.2017

5
0 0.1230 0.2919 0.4773 0.6661 0.8526 1.0341 1.2094
0 0.0895 0.2187 0.3354 0.5189 0.6737 0.8270

6
0 0.0899 0.2198 0.3673 0.5218 0.6775 0.8316
0 0.0684 0.1709 0.2906 0.4186 0.5500

7
0 0.0686 0.1715 0.2919 0.4206 0.5527
0 0.0539 0.1373 0.2368 0.3453

8
] 0.0541 0.1377 0.2377 0.3467
0 0.0436 0.1127 0.1969

9
0 0.0437 0.1130 0.1975
0 0.0360 0.0942

10
0 0.0361 0.0944
0 0.0303

11
0 0.0303

12

Note thatf;, sp is the same as the result given in [10] for théhe penalty at large SNR can be significantly underestimated by
SNR penalty of SD relative to MRC defined in the SNR sensthe lower bound or analog penalty, depending on the values of
that is, the degradation in the SNR. This latter penalty measureand N. This fact can also be observed in Fig. 7, where the
is appropriate for analog communication systems. The penalfio Sy /L, in decibels, is plotted as a function 8f. For ex-
as defined here (the SNR increase required to maintain a targeiple, wher{ L, N) = (1, 8), the digital penalty at large values
SEP) is appropriate for digital communication systems. Noté SNR is 1.0683 dB greater than the small (or analog) SNR
that the SNR penalty of SD with MPSK in i.i.d. Rayleigh fadingenalty, and it is 1.5743 dB greater wheh N) = (1, 16). It
channelsis lower bounded by (19a) for all values of SNR. Residtseen in Figs. 6 and 7 that the large SNR penalty becomes in-
(19b) is an upper bound to the SNR penalty in digital systemgeasing larger than (19a) dsincreases. In fact
valid for all values of SNR and is attained at large values of
SNR.

Fig. 6 showss;, and 8y as functions of the number of di- Busp _ log(N)

versity branches)V, for variousL. It is seen from Fig. 6 that Brsp  el-1/N (20)
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TABLE I
LOWER AND UPPERBOUNDS { gLLJ } OF THESNR RENALTY IN DECIBELS

N
L 3 4 5 6 7 8 9 10 11 12

0.5115 1.0146 1.4671 1.8709 2.2333 2.5613 2.8605 3.1355 3.3898 3.6264

2
0.5870 1.1928 1.7501 2.2536 2.7089 3.1229 3.5017 3.8505 4.1735 4.4742
0 0.2803 0.6048 0.9241 1.2258 1.5077 1.7704 2.0156 2.2451 2.4606

3
0 0.3123 0.6936 1.0797 1.4511 1.8022 2.1321 2.4418 2.7327 3.0067
0 0.1773 0.4043 0.6420 0.8764 1.1023 1.3179 1.5230 1.7180

4
0 0.1938 0.4550 0.7372 1.0213 1.2992 1.5672 1.8241 2.0697
0 0.1223 0.2901 0.4741 0.6616 0.8470 1.0274 1.2017

5
0 0.1320 0.3219 0.5368 0.7608 0.9857 1.2074 1.4236
0 0.0895 0.2187 0.3654 0.5189 0.6737 0.8270

6
0 0.0956 0.2398 0.4089 0.5898 0.7755 0.9617
0 0.0684 0.1709 0.2906 0.4186 0.5500

7
0 0.0725 0.1857 0.3220 0.4712 0.6270
0 0.0539 0.1373 0.2368 0.3453

8
0 0.0568 0.1481 0.2603 0.3854
0 0.0436 0.1127 0.1969

9
0 0.0457 0.1208 0.2149
0 0.0360 0.0942

10
0 0.0376 0.1005
0 0.0303

11
0 0.0315

12

and the ratigdy sp /1. sp grows without bound ad increases. for the following reason. They are extremely simple and in
The proof of (20) is a straightforward application of the Stirlingxplicit closed-form, while the exact evaluation of the SEP
formula [20] and is omitted. This interesting result indicates thagquires numerical integration. The bounds do not depend on
in digital systems, SD can lose much more in performance réte average branch SNR and, hence, are valid for all values
ative to MRC than Suggested by previous results [_‘]_0]_ of SNR. Thus, the SEP of H-S/MRC at average branch SNR
T" is lower and upper bounded by the SEPNfbranch MRC
operating at SNR; 'T'ands;'T', respectively. In the examples,
the SEP was approximated to within0.43 dB in SNR for

In this paper, we derived simple explicit lower and uppe&? < L < N < 12.
bounds on the SNR penalty of H-S/MRC relative to MRC used Contrary to a previous conjecture, the penalty of H-S/MRC
with MPSK. The penalty is defined in the error-rate senddiversity relative to MRC diversity was shown not to be a con-
as the increase in SNR required for H-S/MRC to achiewsant; it is neither independent of the SNR nor the target SEP. It
the same target SEP as MRC. These bounds are importaas also shown that a previous result for the performance loss of

VI. CONCLUSIONS
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SD relative to MRC is a lower bound for all values of SNR antettingé(e, M) = min{é(e), 7(M —1)/M?}, (30) can be upper
can greatly underestimate the loss for large values of SNR. Weunded as
further obtained an upper bound for the SD performance loss.

e
I(Tye) < 1/ AL de.
APPENDIX A s(e) AT + sin®(8(e, M))
ASYMPTOTIC EXPANSION OF SEPFOR SMALL SNR This implies that
In this appendix, we derive the expansion of SEP for asymp- 1 1 NAO® — §(c
totically small SNR. pipl2lse) < — i s[in2(5(e( 3\]/[))1“1/2 (31)
Lemma 1: Let ’
d hence
1 ex sin?(# an
p(I) = —/ 1T (%) dp. (21)
T Jo =y \sin®(0) + anl’ hmsup ——1(T,e) <0. (32)

1‘*1/2
The asymptotic expansion ofI') for smallT" is given by
On the other hand, it is clear from the definition &fin (27b)

p() = ©_ k(ag,...,an)IY2 4 0o(TY2)  (22) thatly(T,€) > 0. This together with (32) gives
™
where
e N 2 hrr%) 17212 I,(T,e) = 0. (33)
kag, ..., a,) 2 - / {1 - H <aU7+u2> } du. (23) This completes the proof of (28).
70 n=1 27" Next, we conside[l(F,e). We will show that for any > 0
Proof: Let
lim sup L(Te) — k(a1,...,an)| < e (34)
C) = r1/2
9(r) = = = p(D). (24) reo
From (27a)
For anye > 0, leté = ¢/K(ay,...,a,). The continuity of s N
6/ sin(#) aroundd = 0, implies that there exisi§¢) such that L(T,e)= / () 1— H 1— apl’ "
. T Jo - anl' + sin?(0) % '
1 < sin(6) < 1 25) n=1
1+é~ 0 ~1-¢ (35)
whenever|d| < 6(e). For suché(e), g(T") can be rewritten in Using (25), (35) can be upper bounded as
terms of two separate integrals as
§(e) N
g(I') = Ii(T, ) + I»(T', ) (26)  I(Ie) - / {1 -1I (1 - LFG) } o
™ Jo ne1 CLnF + W
where
N . (8(e)/(148))(1/T/?) N 2
al o sin” () :l/ 1 < ke )
11(F7€)—;/ { 1;[ (m)}ﬂw (27a) T Jo };[1 an + u?

and , TY2(1 + &)du (36)

C) N -2
I (T, e) ! / {1— 11 (%) } df. (27b) where we have obtained (36) by the change of variables
5(e) sin(0) + an (1/TY2)(A/(1 + €)). Taking thelim sup on both sides of (36)
We will consider I;(T",e) and Ix(T,e) separately in the gives
following.
We will first show that lim sup

I'—0 1"1/2
L(T, €) = o(TY/?). (28)

and therefore
Let A = max, a,, then

IID

n=1

ILi(T,e) < k(ay,...,an)(14+¢€)  (37)

hmsup {FUQ 1(T,e) — k(ag,..., an)] <e (38)

o 2 N
o<t [ fi- <§n¢) a0 - | |
T Jé(e) sin“(0) + AT Similar steps to those leading to (38) yield

1 © AT N 111n1nf |: L(Te) — k(ag,..., a ):| > —e. (39)
_?./5<E>{1_<1_m> }de. (29) s an] s

It can be shown by induction that- (1 — ¢)¥ < Ng¢,VN > 1 Equations (38) and (39) imply that

andq < 1. Using this fact, (29) becomes

(T )<l/® _NAL (30)
2Ae s(e) AT + sin 20y which completes the proof of (34).

ILi(T,e) — k(a1,...,an)| <€ (40)

1
hm sup pizl
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Recall from (26) thaf, (I, ¢) = g(I') — I>(T', ¢). Substituting - Since the elements af are nonnegativelz(S)} ses; are|S;|

this into (40), and using (28) results in nonnegative numbers, and frofhheorem 3
1
hm sup 1/29(F) —k(ay,...,an)| <e (41) Z p(S)z(S) = H [1;(5)]10(5) (47)
T SES; SES;

The above is true for all > 0, and thus for any probability vectof p(S)} scs, such thad s p(S)=1.

1 i i - .
hm F1/2g<r) = K(a1,...,an). (42) In particular, withp(S) = 1/|S;|, (47) becomes

This, together with (24), implies that
©

1/1551
|5 | > af [ 11 a;(S)] . (48)

p(r) = — = H(alv L) an)rl/2 + 0(F1/2) (43) S€S; S€S;
m
which completes the proof dfemma 1 g Consider now the following product:
APPENDIX B H z(8) = H H Yn: (49)
S€ES; SES; neS

MATHEMATICAL INEQUALITIES
ote that the first product on the right side (RS) of (49) has
| = ( ) terms and the second product haterms. Out of

ities needed to prove the SEP bounds in Appendix C. L ) ) )
P PP erms the number of terms in whigh occurs is equal to

: t

z = {z, }necz, be avector whose elements @enonnegative | 1\?'

numbers ang = {p, }ncz, be a probability vector assomated(&— ). By symmetry, similar arguments show that occurs
with z such thaP{x, } = p, and¥>, ;. pn = 1. (2 ) times in the RS of (49) for each € Z . Therefore, (49)

Definition 1: As in [21], we define the arithmetic and geobecomes

In this appendix, we derive some mathematical mequ%

metricp-mean (AGM) to be N-1
H z(S) = H 1/7(17 1). (50)
Z PnTn SeS; neZyn
neZn
and Note that
&zp) = ] oo <N> <N - 1)
)i=N{ . 51
n€Zn j J j— 1 ( )
respectively.
Theorem 3 (AGM Inequality) The arithmetic and geometric and therefore
p-mean satisfy the following relation: i (N
L= (52)
Uz, p) > 6(z,p) (44) NS

and theequalityin (44) is achievedf and only if(iff) z,, = x for  Substituting (50) and (52) into (48) gives

all n satisfyingp,, > 0. Several proofs oTheorem 3are given )

in [21, pp. 16—18]. > a( 1y, - yn )N (53)
Definition 2: Lety = {yn }nez, - Thejth elementary sym- |S | Ses;

metric function(ESF) ofy, denoted by€;(y), is defined as the

sum of all possible productg @t a time) of the elements gf

Mathematically

Multiplying both sides by|S;| and summing ovey, (53)
becomes

=3 1w (45) DI CEDY <N> 1y - yn)/N . (54)
SeS; neS JEZN SES; JEZN J

whereS; = {S C Zy:|S| = j} and|S| denotes the cardinality But} s. s #(S5) = > scs, [1nesyn = €;(y), and therefore
of the setsS.

Theorem 4 (ESF-Sum Inequality)f the elements oy are E (y) > <N> o un )N
nonnegative, then the sum of the ESF's satisfy the following jeZZN i) 2 ].GZZN ) @y ouw)
inequality:

Note that for eachi, Theorem 3mplies equality (48) iffz(S) =
IOEDS <N> (yrys...yn )/ (46) xVS € S;.Butu(S) = VS € S;iff y, =y Vn € Zy, which

implies that for eachy, the equality in (48), and consequently,
in (53), is achieved iffy,, = y Vn € Zy. Since the equality
holds for eacly, summing oveyj preserves the equality in (54),
and the equality in the ESF-Sum Inequality is achieved iff all
z(S) = H Yn. elements ofy are equal. This completes the proofTdieorem

4. O

JEZN JEZN

and theequalityin (46) is achieved iff all elements gfare equal.
Proof: For eachS € S;, let

nes
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APPENDIX C H-S/MRC in terms of the well-known MRC performance for
PrROOF OF THESEP BOUNDS eachl as

In this appendix, we give a proof of the SEP bounds using the _
results of Appendix B. In particular, we will use the AGM In- Peinc(BL'T) < Pepi-sre(T). (60)
equality, given by (44) oTheorem 3to prove the lower bound.
Similarly, the ESF-Sum Inequality, given by (46) Ofieorem 4
will be used to prove the upper bound.

Proof [Lower Bound]: For eachl’ andé, let

F-l—'s;n207 ez, 1+ > €y =1+ Y < ><H y”N) - (6D)

O
Proof [Upper Bound]: The ESF-Sum Inequality dfheorem
4 is equivalent to

v, = Fz;n 0 L, (55) jE€ZN JE€ZN nEZy
n + sin
T anZe " €1y Note that the LS is the expansion of tieproduct of(y,, + 1)

and the RS is the binomial expansion(pf ., ya'" + 1]V

Sincez,, > 0, Theorem 3mplies that, for any probability vector Therefore

p N
1/N
T+ sin? 0 TL/n +sin® 6 Il w+> [H !+ 1 (62)
an ——, |t Z Pn|— =3, neZy n€Zy
sin” 6 sin” 6
nezy nezy
For eachl” andd, let
F—I—sm o1 I'L/n +sin?61""
[ [ e
wez, L sin 20 In sin” 6 — n €l
nely sin” 6
I'L/n N
r Z pn+L Z pn% +Sin26 sin297 "e L
n€Z, nezd
sinZ 0 Sincey,, > 0Vn € Zy, then (62) becomes
[r+sm29r 0 [FL/n-I—sinzG}
- 10 r+'s;n29 br I FL/n.—I; sin? § p”. 57) sin? § wezt sin? §
sin“ 6 sin“ 6
n€Zy nezZy 1/N N
L [T (&) +sin”6
For N i.i.d. diversity branchesp is a N x 1 vector > nezy — (64)
with identical elementsp, = 1/N n € Zy and sin” ¢
[Cnez, Pn+ L pezy pu(1/n)] = B~ in accordance with
(16a), and therefote L
But [[],ezy L/n)YN = g;t, and (64) becomes
[ﬂLlrJrsin?ar> {F+sin29r 0 [FL/n—Fsin?{?} L on ,
sin2 f Sin2 d . sin2 0 : |:F+Sln 9} H [FL/n—{—sm 9}
nely sin” - sin”
(58) nezy
T 4+ sin%6
Integrating the inverse of both sides o¥eand scaling byl /, > [ﬂl’—a} (65)
we obtain sin
~ I Therefore, for eacl’ we have
1 [® sin” # 1 [® sin” #
— a2, de S - -~ . - 2. © 2 L 12
T Jo LB T +sin”6 mJo |I'+sin”6 l/ { sin” @ } H { sin” @ }dﬂ
sinZ 0 mJo [T+sin®g] 10 [TL/n+sin®¢
[0 e
o LI'L/n 4+ sin” 0 o N
nezy 1 sin? 4
< —/ s df (66)
T™ Jo /BU I'+s 0

Applying (59) withT" replaced bycypskI’ and comparing it
with (3) and (4), we obtain the lower bound for the SEP ofnd hence, applying (66) withreplaced by:\psk I, we obtain

4Note that (58) can also be thought of as a consequence of Schur monotonicity 1
[22]. P. n-s/mrc(I') < Pevre(Bg T). (67)
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