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Abstract—Closed-form expressions that lower and upper bound
the penalty of hybrid selection/maximal ratio combining relative
to maximal ratio combining (MRC) for -ary phase-shift keying
(MPSK) modulations are proved. The bounds offer simple-to-eval-
uate explicit expressions, and are typically within 0.6 dB for hy-
brid systems with diversity order up to eight that use at least two
branches, yet are independent of signal-to-noise ratio (SNR). Con-
trary to conclusions conjectured in a recently published paper, it
is proved that the SNR penalty is not a constant, independent of
SNR. It is also shown that previous estimates of the performance
losses of selection diversity relative to MRC underestimate or lower
bound the losses for MPSK modulation systems, and that the true
loss can be significantly larger than previously believed. An upper
bound to this loss is also obtained.

Index Terms—Diversity combining, error probability, fading
channels, hybrid selection/maximal ratio combining (H-S/MRC),
maximal ratio combining (MRC), selection diversity (SD).

I. INTRODUCTION

PRACTICAL considerations of diversity systems with
reduced complexity for wireless communications have

given impetus to hybrid selection/maximal ratio combining
(H-S/MRC) techniques [1]–[9]. In H-S/MRC, the receiver
selects the branches (from available diversity branches)
with largest signal-to-noise ratios (SNRs) for maximal ratio
combining (MRC), offering complexity reduction with good
performance and bridging the performance gap between selec-
tion diversity (SD) and MRC. From a system design point of
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view, it is useful to quantify the tradeoff between reduction in
complexity and loss in performance.

It is well known that the average SNR of MRC is equal to
the sum of the average branch SNRs [10]. The performance of
H-S/MRC is less well understood. A long and complex anal-
ysis giving the average SNR of H-S/MRC was presented in
[6]. A more concise and tractable analysis, based on a “vir-
tual branch technique,” which gives the variance of the SNR
as well as the average SNR, was presented in [8]. The average
symbol-error probability (SEP) of digital modulation schemes
using H-S/MRC was derived in [9]. However, the results require
evaluation of a double or single summation, each term of which
requires a single numerical integration over a finite interval.

In this paper, we derive simple lower and upper bounds for
the SEP performance of H-S/MRC used with-ary phase-shift
keying (MPSK) modulation. The bounds are derived by com-
paring the SEP performance of H-S/MRC with that of-branch
MRC. Since H-S/MRC combines only out of branches, it
incurs an SNR loss, or penalty, relative to MRC where all
branches are combined. The penalty is defined in an error-rate
sense as the increase in SNR required for hybrid combining to
achieve the same target SEP as MRC. It is to be expected that
this penalty is a function of the target SEP, and hence, a function
of SNR.

The SNR penalty is rigorously lower and upper bounded.
The bounds are useful not only because they are simple ex-
plicit closed-form expressions, but also because they do not de-
pend on the average branch SNR and are valid for all values
of SNR. Thus, the SEP of H-S/MRC systems can be easily es-
timated to a high degree of accuracy (or rigorously lower and
upper bounded) by using the new bounds with the wide range
of previously published results on MRC with MPSK.

We first establish asymptotic analytical expressions for the
SNR penalties that are incurred at small and large SNR values.
In the course of obtaining these asymptotes, we prove that a
conjecture stated in [11], that the SNR penalty incurred by
H-S/MRC relative to MRC is a constant, independent of SNR
is, surprisingly, false.

The special case of H-S/MRC with is well-known
selection diversity (SD). The SD method has been used for
decades [10] and continues to find widespread application
owing to its simplicity and low implementation cost [12]–[15].
Using the results of our analyses, we derive some interesting,
previously unknown, conclusions regarding the performance
of SD relative to MRC. In particular, it is shown that previous
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assessments underestimate or lower bound the performance
losses of SD relative to MRC with MPSK modulations. Fur-
thermore, we obtain an upper bound to this loss.

This paper is organized as follows. Section II describes
the system model, recalls relevant diversity combining results
needed for the paper, and defines the system parameters. The
asymptotic SNR penalties are derived in Section III. Simple
bounds on the SNR penalty and the SEP are presented in
Section IV. Section V presents some numerical examples, and
conclusions are given in Section VI. An asymptotic expansion
of the SEP valid for small SNR is derived in Appendix A.
Useful mathematical inequalities are derived in Appendix B,
and using them, the bounds are proved in Appendix C.

II. DIVERSITY COMBINING ANALYSIS

In this section, the system model is presented. Some previous
results regarding diversity, needed for the development of this
paper, are also summarized.

A. Preliminaries

Throughout the paper, ,

, and . Whenever ,

, i.e., the empty set. For each , let denote
the instantaneous SNR of theth diversity branch defined by

, where is the average symbol energy, is
the instantaneous fading amplitude, and is the two-sided
noise power spectral density of theth branch. We consider
the widely-used Rayleigh fading model for which the’s
are independent and identically distributed (i.i.d.) Rayleigh
random variables (rv’s), and thus, the’s are i.i.d. continuous
rv’s, each with exponential probability density function (pdf)
and mean .

An H-S/MRC diversity system has instantaneous output SNR
of the form

(1)

where is the ordered , i.e., , is
the number of available diversity branches, and .1

B. SEP of H-S/MRC and MRC

The SEP for H-S/MRC in a slowly fading multipath envi-
ronment is obtained by averaging the conditional SEP over the
channel ensemble as . For
coherent detection of MPSK, the conditional SEP, denoted by

, is given (see, for example, [17]) by

(2)

1Note that the possibility of at least two equal ’s is excluded, since 6=
 almost surelyfor continuous rv’s [16].

Fig. 1. SEP for coherent detection of 4-PSK with H-S/MRC as a function of
average SNR per branch in decibels forN = 8 and variousL. The curves depict
L = 1, 2, 4, and 8 in successively lower positions.

where and . A conve-
nient expression for the SEP of H-S/MRC given in [9] is

(3)

The form of (3) is particularly tractable for further analysis and
we shall use it to derive the central results of this paper. Note
that SD and MRC are special cases of H-S/MRC with
and , respectively. Substituting into (3), the SEP
for coherent detection of MPSK with MRC is obtained as

(4)

C. SNR Penalty

The SEP versus average SNR per branch for coherent detec-
tion of MPSK with (4-PSK) using H-S/MRC is plotted
in Fig. 1 for 1, 2, 4, and 8 with . The notation
H- is used to denote H-S/MRC that selects and combines
out of branches. Note that H-1/1 is a single branch receiver,
and H- and H- are -branch SD and MRC, respec-
tively. Since H-S/MRC combines only branches, it incurs an
SNR loss, or penalty, relative to MRC where allbranches are
combined. For a digital communication system, we define the
SNR penalty as the increase in SNR required by H-S/MRC to
achieve the same target SEP as-branch MRC. That is

(5)
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where , , , and are the SEP of
H-S/MRC at SNR , the SEP of MRC at SNR , the SNR
penalty, and the average branch SNR, respectively. Note that
the SNR penalty, in general, is a function of the target SEP, and
hence, a function of the average branch SNR; that is, .
Equation (5) defines implicitly. It can be rewritten to give

(6)

explicitly, where is the inverse H-S/MRC SEP
function. Although the inverse function may be obtained numer-
ically if we have in hand, the function is not
known in closed-form.

Based on limited numerical results (binary modulations with
2, 3 and 4), a plausible conjecture was made in

[11] that the SNR penalty of H-S/MRC relative to MRC is a
constant, independent of SNR. It is stated that “this result is
obvious from the numerical results, but certainly not obvious
from the analytical expressions.” (The analytical expressions
are not used to prove this conclusion in [11].) Consider the SEP
results for H-S/MRC with H-4/8 and of MRC with H-8/8 in
Fig. 1. Inspection of Fig. 1 gives credence to this thinking, as
the penaltyappearsnumerically to be constant; for example,
the SNR penalties for SEP values of 10and 10 are
graphically the same. In the next section, we present analytic
asymptotic penalties for small and large SNR for alland

. It will be shown that though they are not equal, they are
sometimes quite close, and hence, although the conjecture of
[11] is rigorously false, it may be a good approximation for
some cases.

III. A SYMPTOTIC SNR PENALTIES

Theorem 1: The asymptotic SNR penalty for small and large
SNR, is given by

(7a)

and

(7b)

respectively, where is defined to be

(8)

Proof [Penalty for Asymptotically Small SNR]:It can be
shown, usingLemma 1given in Appendix A, that the asymptotic
expansion for and for small is
given, respectively, by

(9)

(10)

where is given by (8). Note that
for . Since the inequality is strict (except for

, in which case they are trivially equal), a change of scale
results in the two functions

and touching asymptotically. The asymptotic
SNR penalty is determined by the value ofsuch that

(11)

Substituting (9) and (10) into (11) gives (7a), which proves the
first half of Theorem 1.

Proof [Penalty for Asymptotically Large SNR]:Note that
since and are both analytic, they
each have a power series expansion in terms ofabout

. Let and , respectively, denote the power
series coefficients of and in terms
of near .

Note that the first nonzero coefficients in the power series
expansion are

(12)

and

(13)

Since for (except for ,
in which case they are trivially equal), a change of scale results
in an th order “osculation” of the two functions and

.2 The asymptotic penalty is the value of
determined by the th order “osculation” conditions, i.e.,

(14)

where denotes the th power series coefficient of
in terms of about . Equation (14) implies that

(15)

which results in (7b). This proves the second half ofTheorem
1.

Interestingly, one sees from (7a) and (7b) that the asymptotic
penalties are independent of for MPSK. When

, and is close
to , the difference being only 0.0667 dB. However, when

one has
and the difference is 0.5299 dB, clearly demonstrating that the
penalty is not constant for all values of SNR.

While and provide useful information about the per-
formance of H-S/MRC, it is also important to assess the perfor-
mance of H-S/MRC for arbitrary SNR. General results valid for
arbitrary SNR are presented in the next section and proved in
subsequent sections.

2Two curves are said to be innth order “osculation” if their firstn derivatives
(includingn = 0) are equal [18].
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IV. SIMPLE BOUNDS

The following theorem states simple and explicit expressions
of lower and upper bounds for the SNR penalty of H-S/MRC
relative to MRC with MPSK modulations.

Theorem 2: Let and be defined as

(16a)

and

(16b)

respectively. The SNR penalty of H-S/MRC relative to MRC is
lower and upper bounded by

(17)

for coherent detection of MPSK modulations. Equivalently, the
SEP of H-S/MRC is lower and upper bounded by

(18)

Note that and in (16a) and (16b) do not depend on the
average branch SNR and, hence, the SNR penalty bounds in (17)
are valid for all values of average branch SNR. Note also that

. Using the SEP bounds in (18), the SEP of H-S/MRC
at average branch SNRcan be lower and upper bounded by
the SEP of MRC operating, respectively, at SNRs and

, using previously published results on MRC. Note that as
the difference between and is typically in the second or
third significant digit, little is lost by using the rigorous lower
bound, to assess the performance of a practical system.

The equivalence of (17) and (18) inTheorem 2follows from
the definition of SNR penalty in (5), together with the fact that

is a strict monotonically decreasingfunction of its
argument. Therefore, in provingTheorem 2, it is sufficient to
prove either (17) or (18). In Appendix C, we give a proof of
the SEP bounds. To do this, we will need some mathematical
inequalities, which we derive first in Appendix B.

V. EXAMPLES

We now illustrate how the SEP for H-S/MRC can be easily
estimated using the results ofTheorem 2. Fig. 2 shows the exact
lower bound and upper bound of the SEP for coherent detec-
tion of 4-PSK using H-S/MRC with and

.3 The lower and upper bounds are obtained
from the SEP of 16-branch MRC operating at SNR and

, respectively. The exact SNR penalty, , obtained by
numerically inverting the curves in Fig. 2, together with,
and for the case of , is plotted as a function
of average branch SNR in Fig. 3 and as a function of target SEP

3Fig. 2 shows the SEP as low as 10 only to illustrate the asymptotic be-
haviors of the�(�); these extremely low SEPs are not practical, especially for
wireless mobile communications. Similar comments apply to the ranges of pa-
rameters shown in Figs. 1 and 2.

Fig. 2. SEP for coherent detection of 4-PSK with H-S/MRC as a function of
average SNR per branch forN = 16. The upper and lower bounds are obtained
from MRC results according toTheorem 2.

Fig. 3. SNR penalty of H-S/MRC as a function of average SNR per branch for
(L;N) = (2; 16).

in Fig. 4. Note again that the SNR penalty is not a constant; it is
neither independent of the SNR nor the target SEP.

Figs. 3 and 4 also highlight an interesting result that merits
further discussion. Equation (16a) gives, a lower bound to
the penalty , while (7a) gives the asymptotic, small SNR
penalty, . The value is also precisely the penalty defined
in the SNR sense (i.e, not in a target SEP sense) of H-S/MRC
relative to MRC [6], [8]. It is clear from the figures that though

is very close to , the two quantities are different, the dif-
ference between the two typically being in the second or third
significant figure. A test of the validity of this difference has
been implemented as follows. A closed-form expression for the
SEP of BPSK with MRC is given by [19, p. 825, eq. (14.4–15)]
and a closed-form expression for the SEP of SD is found in [11,
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Fig. 4. SNR penalty of H-S/MRC as a function of target SEP for(L;N) =
(2; 16).

Fig. 5. Penalty incurred by dropping one branch in an H-S/MRC diversity
system.

eq. (18)]. Using these, we have calculated the small SNR asymp-
tote for and . The results
of this test agree with as previously determined.

Table I shows and for all valid values of .
It is clear that provides an excellent approximation to in
these cases. The values for and can be tabulated using
simple formulas given in (16a) and (16b). Table II gives some
representative values of the lower and upper bounds on the SNR
penalty. The maximum difference between the bounds is less
than 0.85 dB for . Thus, the geometric
mean of the two bounds gives a result that is accurate to within

0.43 dB for the cases in Table II. As expected, it can be seen
from Table II that for a given , the penalty decreases as
increases. Also as expected, for a given, the penalty increases
as increases. It is also to be expected that the penalty incurred
by dropping one of the diversity branches (i.e., ) will
decrease and become negligible asincreases. This behavior
is exhibited in Fig. 5, which quantitatively shows how rapidly

Fig. 6. Lower and upper bounds for the SNR penalty of H-L=N as a function
of N for variousL.

Fig. 7. Ratio� =� in dB as a function ofN for variousL. Highest curve is
for L = 1, andL decreases monotonically to the lowest curve withL = 16.

the penalty of H- decreases as increases. A knee
in the penalty curve occurs around and the penalty is
less than 0.3123 dB for .

The SNR penalty of SD relative to MRC is lower and upper
bounded by setting in (16a) and (16b), respectively, to
obtain

(19a)

and

(19b)
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TABLE I
LOWER BOUNDS AND ASYMPTOTIC VALUES f g OF THE SNR PENALTY IN DECIBELS

Note that is the same as the result given in [10] for the
SNR penalty of SD relative to MRC defined in the SNR sense;
that is, the degradation in the SNR. This latter penalty measure
is appropriate for analog communication systems. The penalty
as defined here (the SNR increase required to maintain a target
SEP) is appropriate for digital communication systems. Note
that the SNR penalty of SD with MPSK in i.i.d. Rayleigh fading
channels is lower bounded by (19a) for all values of SNR. Result
(19b) is an upper bound to the SNR penalty in digital systems,
valid for all values of SNR and is attained at large values of
SNR.

Fig. 6 shows and as functions of the number of di-
versity branches, , for various . It is seen from Fig. 6 that

the penalty at large SNR can be significantly underestimated by
the lower bound or analog penalty, depending on the values of

and . This fact can also be observed in Fig. 7, where the
ratio , in decibels, is plotted as a function of. For ex-
ample, when , the digital penalty at large values
of SNR is 1.0683 dB greater than the small (or analog) SNR
penalty, and it is 1.5743 dB greater when . It
is seen in Figs. 6 and 7 that the large SNR penalty becomes in-
creasing larger than (19a) asincreases. In fact

(20)
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TABLE II
LOWER AND UPPERBOUNDSf g OF THE SNR PENALTY IN DECIBELS

and the ratio grows without bound as increases.
The proof of (20) is a straightforward application of the Stirling
formula [20] and is omitted. This interesting result indicates that
in digital systems, SD can lose much more in performance rel-
ative to MRC than suggested by previous results [10].

VI. CONCLUSIONS

In this paper, we derived simple explicit lower and upper
bounds on the SNR penalty of H-S/MRC relative to MRC used
with MPSK. The penalty is defined in the error-rate sense
as the increase in SNR required for H-S/MRC to achieve
the same target SEP as MRC. These bounds are important

for the following reason. They are extremely simple and in
explicit closed-form, while the exact evaluation of the SEP
requires numerical integration. The bounds do not depend on
the average branch SNR and, hence, are valid for all values
of SNR. Thus, the SEP of H-S/MRC at average branch SNR

is lower and upper bounded by the SEP of-branch MRC
operating at SNR and , respectively. In the examples,
the SEP was approximated to within0.43 dB in SNR for

.
Contrary to a previous conjecture, the penalty of H-S/MRC

diversity relative to MRC diversity was shown not to be a con-
stant; it is neither independent of the SNR nor the target SEP. It
was also shown that a previous result for the performance loss of
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SD relative to MRC is a lower bound for all values of SNR and
can greatly underestimate the loss for large values of SNR. We
further obtained an upper bound for the SD performance loss.

APPENDIX A
ASYMPTOTICEXPANSION OFSEPFOR SMALL SNR

In this appendix, we derive the expansion of SEP for asymp-
totically small SNR.

Lemma 1: Let

(21)

The asymptotic expansion of for small is given by

(22)

where

(23)

Proof: Let

(24)

For any , let . The continuity of
around , implies that there exists such that

(25)

whenever . For such , can be rewritten in
terms of two separate integrals as

(26)

where

(27a)

and

(27b)

We will consider and separately in the
following.

We will first show that

(28)

Let , then

(29)

It can be shown by induction that
and . Using this fact, (29) becomes

(30)

Letting , , (30) can be upper
bounded as

This implies that

(31)

and hence

(32)

On the other hand, it is clear from the definition ofin (27b)
that . This together with (32) gives

(33)

This completes the proof of (28).
Next, we consider . We will show that for any

(34)

From (27a)

(35)

Using (25), (35) can be upper bounded as

(36)

where we have obtained (36) by the change of variables
. Taking the on both sides of (36)

gives

(37)

and therefore

(38)

Similar steps to those leading to (38) yield

(39)

Equations (38) and (39) imply that

(40)

which completes the proof of (34).
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Recall from (26) that . Substituting
this into (40), and using (28) results in

(41)

The above is true for all , and thus

(42)

This, together with (24), implies that

(43)

which completes the proof ofLemma 1.

APPENDIX B
MATHEMATICAL INEQUALITIES

In this appendix, we derive some mathematical inequal-
ities needed to prove the SEP bounds in Appendix C. Let

be a vector whose elements arenonnegative
numbers and be a probability vector associated
with such that and .

Definition 1: As in [21], we define the arithmetic and geo-
metric -mean (AGM) to be

and

respectively.
Theorem 3 (AGM Inequality):The arithmetic and geometric

-mean satisfy the following relation:

(44)

and theequalityin (44) is achievedif and only if(iff) for
all satisfying . Several proofs ofTheorem 3are given
in [21, pp. 16–18].

Definition 2: Let . The th elementary sym-
metric function(ESF) of , denoted by , is defined as the
sum of all possible products (at a time) of the elements of.
Mathematically

(45)

where and denotes the cardinality
of the set .

Theorem 4 (ESF-Sum Inequality):If the elements of are
nonnegative, then the sum of the ESF’s satisfy the following
inequality:

(46)

and theequalityin (46) is achieved iff all elements ofare equal.
Proof: For each , let

Since the elements of are nonnegative, are
nonnegative numbers, and fromTheorem 3

(47)

for any probability vector such that .
In particular, with , (47) becomes

(48)

Consider now the following product:

(49)

Note that the first product on the right side (RS) of (49) has
terms and the second product hasterms. Out of

terms, the number of terms in which occurs is equal to
. By symmetry, similar arguments show that occurs

times in the RS of (49) for each . Therefore, (49)
becomes

(50)

Note that

(51)

and therefore

(52)

Substituting (50) and (52) into (48) gives

(53)

Multiplying both sides by and summing over , (53)
becomes

(54)

But , and therefore

Note that for each, Theorem 3implies equality (48) iff
. But iff , which

implies that for each, the equality in (48), and consequently,
in (53), is achieved iff . Since the equality
holds for each , summing over preserves the equality in (54),
and the equality in the ESF-Sum Inequality is achieved iff all
elements of are equal. This completes the proof ofTheorem
4.
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APPENDIX C
PROOF OF THESEP BOUNDS

In this appendix, we give a proof of the SEP bounds using the
results of Appendix B. In particular, we will use the AGM In-
equality, given by (44) ofTheorem 3, to prove the lower bound.
Similarly, the ESF-Sum Inequality, given by (46) ofTheorem 4,
will be used to prove the upper bound.

Proof [Lower Bound]: For each and , let

.

(55)

Since , Theorem 3implies that, for any probability vector

(56)

(57)

For i.i.d. diversity branches, is a vector
with identical elements , and

in accordance with
(16a), and therefore4

(58)

Integrating the inverse of both sides overand scaling by ,
we obtain

(59)

Applying (59) with replaced by and comparing it
with (3) and (4), we obtain the lower bound for the SEP of

4Note that (58) can also be thought of as a consequence of Schur monotonicity
[22].

H-S/MRC in terms of the well-known MRC performance for
each as

(60)

Proof [Upper Bound]: The ESF-Sum Inequality ofTheorem
4 is equivalent to

(61)

Note that the LS is the expansion of the-product of
and the RS is the binomial expansion of .
Therefore

(62)

For each and , let

(63)

Since , then (62) becomes

(64)

But , and (64) becomes

(65)

Therefore, for each we have

(66)

and hence, applying (66) withreplaced by , we obtain

(67)
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