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Abstract—We derive an upper bound and investigate some ap- imize the desired signal-to-noise ratio (SNR) only. However,
proximations on the symbol error probability (SEP) for coherent  determining the performance of optimum combining is more
detection of M -ary phase-shift keying, using an array of antennas difficult than with maximal ratio combining.

with optimum combining in wireless systems in the presence of In thi d cl d-f . for the bit b
multiple uncorrelated equal-power cochannel interferers and N this regard, closed-torm expressions for the bit-error prob-

thermal noise in a Rayleigh fading environment. Our results are ability (BEP) of binary phase-shift keying (BPSK) have been
general and valid for an arbitrary number of antenna elements as derived for the single-interferer case with Rayleigh fading of the

well as an arbitrary number of interferers. In particular, the exact  desired signal in [1] and [2], and with Rayleigh fading of the
SEP is derived for an arbitrary number of antennas and inter- desired signal and interferer in [3]. An exact BEP expression,

ferers; the computational complexity of the exact solution depends hich . ical int tion. for BPSK and a sinale i
on the minimum number of antennas and interferers. Moreover, WNICN requires numerical integration, ror anaasingle in-

closed-form approximations are provided for the cases of dual terferer is also given in [4].
optimum combining with an arbitrary number of interferers, and With multiple interferers of arbitrary power, Monte Carlo

of two interferers with an arbitrary number of antenna elements.  simulation has been used to determine the BEP in [2]. In [5],
We show that our bounds and approximations are close to Monte 5ner hounds on the BEP of optimum combining were derived
Carlo simulation results for all cases considered in this paper. : .
given the average powers of the interferers. However, these
Index Terms—Adaptive arrays, antenna diversity, cochannelin- pounds are generally not tight.
terference, eigenvalue distribution, optimum combining, Wishart To avoid Monte Carlo simulation, the exact BEP expression
matrices. . . ’ . .
was derived in [6] for the case of equal-power interferers, which
permits analytical tractability. However, the results are limited
I. INTRODUCTION to the case of BPSK and no thermal noise. Approximations for

DAPTIVE ARRAYS can significantly improve the the BEP have been presented in [7] and [8] for binary modula-

performance of wireless communication systems tﬁpn in the presence of thermal noise. However, the approxima-
weighting and combining the received signals to reduce fadi

n of [7] still requires Monte Carlo simulation to derive mean
effects and suppress interference. In particular, with optimu

envalues (a table is provided in [7] for some cases), and the
combining, the received signals are weighted and combin@ proximation of [8] is valid only for the case when the number
to maximize the output signal-to-interference-plus-noise rafi

interferers is less than the number of antenna elements.
(SINR). In the presence of interference, this technique providesIn this Paper, startlr]g from the e|genvalues distribution .Of
substantial improvement in performance over maximal rat mplex Wishart matrices, we first give the exact expression
combining where the received signals are combined to m

the symbol-error probability (SEP) for coherent detection of
-ary phase-shift keying (MPSK) using optimum combining in
the presence of multiple uncorrelated equal-power interferers,

Paper approved by P. Y. Kam, the Editor for Modulation and Detection ffg well as thermal noise, in a Rayleigh fading environment.
Wireless Systems of the IEEE Communications Society. Manuscript recei

October 25, 2001, revised May 27, 2002 and August 17, 2002. The work of ,&f\j/aluatlon of this expression involves multiple n_umerlcal 'nt_e' .
Chiani and A. Zanella was supported in part by the Ministerio dell'Istruziongrals. Then, based on some new results on the eigenvalues distri-

dell'Universita e della Ricerca Scientifica (MIUR) and in part by CO”Sig"q]”glution of complex Wishart matrices, we derive new closed-form
Nazionale delle Ricerche (CNR), Italy. This paper was presented in part at the ’

IEEE Global Telecommunications Conference, San Antonio, TX, NovembkEPPer bounds. We show that these bounds are genera”y _tighter
2001. than those of [5]. Moreover, we extend the approaches in [7]

M. Chiani and A. Zanella are with CSITE-CNR, Dipartimento Elettronicynd obtain new closed-form approximations of the SEP that do
Informatica e Sistemistica, University of Bologna, 40136 Bologna, Italy (e-mail:

mchiani@deis.unibo.it; azanella@deis.unibo.it). ot require Monte Carlo simulation and are close to simulation
M. Z. Win was with the Wireless Systems Research Department, AT&T Labeesults.
Research, Middletown, NJ 07748 USA. He is now with LIDS, Massachusetts In- |n Section II. we describe the system model. and in Sec-
stitute of Technology, Cambridge, MA 02139 USA (e-mail: moewin@mit.edu}. . f,l f . bi Ny ith |
R. K. Mallik is with the Department of Electrical Engineering, Indian Insti- ion IIl, derive the exact SEP o optimum combining with mul-

tute of Technology, Delhi, Hauz Khas, New Delhi 110016 India (e-mail: ritiple interferers. Upper bounds are derived in Section IV, and

mallik@ee.iitd emet.in). o _ approximate formulas are given in Section V. In Section VI,
J. H. Winters is with Jack Winters Communications, LLC, Middletown, NJ . . . . .

07748-2070 USA (e-mail: jack@JackWinters.com). we compare our analytical results with simulations, and in Sec-
Digital Object Identifier 10.1109/TCOMM.2003.809265 tion VII, we present a summary and conclusions.

0090-6778/03$17.00 © 2003 IEEE



CHIANI et al: BOUNDS AND APPROXIMATIONS FOR OPTIMUM COMBINING OF SIGNALS 297

Ni »
-
[0
—_4 g’
& 1
) D Filter A/D |—
2 b
4§
g;, D——Filter A/D | .
1 iu}
_A_q & oc [t
D ] N, D Filter A/D |
Desired Signal
Fig. 1. Baseband model of optimum combining receiver.
Il. SYSTEM MODEL andE x{-} denotes expectation with respectXo Therefore

We consider coherent demodulation with optimum com- N,

bining of multiple received signals in a flat fading environment R = Z EIJCLJCI.]' + NI 4)

as in Fig. 1. The fading rate is assumed to be much slower ’

than the symbol rate. Throughout the pager! denotes the

transposition operator, anl) stands for conjugation and!t is important to remark thaR and, consequently, also the

transposition. The received signal at thé;-element array SINR~ vary at the fading rate.

output consists of the desired signdl; interfering signals, The matrixR~! can be written aUA~UT whereU is

and thermal noise. After matched filtering and sampling at tigeunitary matrix andA is a diagonal matrix whose elements

symbol rate, the array output vector at tilnean be written as on the principal diagonal are the eigenvalueRofdenoted by
(M,-..,An,). The vectoru = Ufep = [u1,...,un,]" has

J\(YI . - - . .
z(k) = \/Epepbon(k) + Z \/ECI,jbj(k) +n(k), (1) the same distribution a9, S|_nceU represents a unitary trans-
= formation. The SINR given in (2) can be rewritten as

=1

where Ep and Er; are the mean (over fading) ener- Na a2
gies of the desired signal angth interferer, respectively; v = EDcLUAflUTcD = EDZ)\;' (5)
cp = leps-. s epn,]” ander; = lerja,.oerjna” =1

are the desired andgth interference propagation vectors, . . . .
respectively;bo(k) and b;(k) (both with unit variance) are SinceR is a random matrix, its eigenvalues are random vari-
the desired and interfering data samples, respectively; es. i ) . .

n(k) represents the additive noise. We modgl and cs ; We now investigate the statistical properties of

as multivariate complex-valued TGaussian ve]Lctors haviﬁélvbl-w)‘l\u_)-_ We W'”lt_ShO_Wt Iattert' t?at this '3_ relﬁfed to
problems arising in multivariate statistics, regarding the eigen-
[E{CD} = [E{C],j} = 0 andE CpCp ¢ = E cI,ch.j} =1,

) _ ] ] - I value distribution of complex Wishart matrices. Let
wherel is the identity matrix. The additive noise is modeled
as a white Gaussian random vector with independent and | | |
identically distributed (i.i.d.) elements with {n(k)} = 0 and Cr2|ern era oo ern, (6)
E {n(k)nT(k)} = NoI, whereN,/2 is the two-sided thermal | | |
noise power spectral density per antenna element.

The SINR at the output of thé&/4-element array with op-
timum combining can be expressed [1], [2] as

be a (V4 x Nj) random matrix composed d¥; interference
propagation vectors as columns. For equal-power interferers,
ie.,Er; = Erforj=1,...,Np, (4) can be rewritten as
Y= EDC]L R™"cp (2) N
R = EfR + Nyl @)
where the short-term covariance matRx conditioned to all

interference propagation vectors, is whereR = CICj isa (V4 x N4) random matrix. The eigen-

Ny values ofR can be written in terms of eigenvaluesvfdenoted
R = lEn,bJ(k) Z‘/Ef;jclvjbj(k) ~|—n(k‘) by ()‘17)‘27"'7)‘NA)1 as
j=1 3
-l— )\z:EI/\z'i'NO 'L.:l7...7NA (8)
]\TI
x| > V/Erjerbi(k) +n(k) (3)  where the joint probability density function (pdf) of thé,
J=1 eigenvalues oR are given by the following theorem.
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Theorem 1: The joint pdf of the firstV,.,;,, = min{Na, Nr}
orderedeigenvalues\ = [A1, Xz, ..., An,,, T of R, with A; >
Ao > - > Ay is

min !

Nmin
~ ~ ~ _~ . NNV _NV .
fX(/\l-/ /\27 teey )\]Vn]in) =K | I € A )\L e -
=1

]Vm;n—l N, min ~ -
X H H i =N (9
i=1 |j=i+1
whereN,,,., £
given by
Nmin(Nmin_l)
K — — T _ (10)
FNmi,, (Nmax)FNmin (Nmin)
with
} Nmin
Ly (n) = aVmin Wi =D/2 TT(n — )1 (11)

i=1

The additionalN, — N,,;, eigenvalues oR are identically
equal to zero.
Proof: See Appendix B. [ |
As a consequence dheorem 1we have the following corol-
lary.
Corollary 1 (Reciprocity Principle) : The statistical distribu-
tions of the eigenvalues @&, for the case ofn antennas ang

interferers withm < p, are equal to that of the (nonzero) eigen(15) P

values ofR for the case op antennas aneh interfererst

Using the distribution theory for transformations of 1
random vectors [9] together with (8), the joint pdf of

A=, AN, T with Ay > oo > An, > Ny is
1
fA(/\l ..... )\]\Tmm> = m
)\1—N0 )\Q_NO )\N —Ng
< S —— .., 12
Xf)‘ < Er ~ Er ° Er (12)

wheref+ (+) is given byTheorem 1The additionalV 4 — Ny,in
eigenvalues oR are identically equal tdvy.

I1l. EVALUATION OF THE EXACT SEP
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of the pdf of~, which can be quite difficult to obtain. This is
alleviated by using the chain rule of conditional expectation as

i }} (14)
Ai
Px

where we first perfornk,, {-} (i.e., average over the channel

N4
P.=Ey [Eu{Pr{e |v=Ep>
i=1

~~

max{ N4, N;} andK is a normalizing constant ensemble of the desired signal) to obtain the conditional SEP,

conditioned on the random vectdy denoted by, 5. We then
performE  {-} to average out the channel ensemble of the in-
terfering signals.

The jth interfering data samples; (k) j = 1,..., Ny, can
be modeled as zero-mean, unitary variance Gaussian random
variables. Note that the Gaussian assumption gives a good ap-
proximation when the interfering contribution is due to a large
number of interferers sampled at a random time, and generally
it represents a worst case [10]; here, it will be used regardless
of the number of interferers. In the following, we assume that
bo(k) is an MPSK data sample. With the previous assumption
together with the Gaussianity afk), Pr {e | v} for coherent
detection of MPSK is given by [11], [12]

Pr{e | v} = 1 /6 exp <— CMPQSK'V> de
T Jo sin“ 4
wherecypsg = sin?(r/M) and® = (M — 1)/M. Using
A can be written as

(15)

(&

L e [, S0
A T 7 0 v P sin? 6 Di:1 i
CMPSK

1 [©
:;/0 ,I/J“”’\ <_ sin” ¢ ) b (19

wheres)_y(-) is the characteristic function (cf) of, condi-
1

tioned onA, given by
Y (1- 222)

and we have used the fact thais Gaussian with i.i.d. elements.
Therefore, the conditional SEP, conditioned)gin the general

1/17|)\(j1’) = 17)

The SEP for optimum combining in the presence of multipl‘é\ase ofV.4 antennas and'; interferers, becomes

cochannel interferers and thermal noise in a fading environment 1
is obtained by averaging the conditional SEP over the (desired * ¢/A —

and interfering signal) channel ensemble. This can be accorrF
where

plished by
P <E, {Pr{e [})
/o Pr{e | v ==} fy(z)de

(13)

wherePr {e | v} is the SEP conditioned on the random variabl

/ ° A(6) AH sin” 6 49 (18)
T Jo el sin® 6 + CMPSKEA_:)
. 9 P N —Nmin

A(9) 2 = 19

@) Linz 0+ CMPSK% (19)

Using (9), (12), (14), and (18), the unconditional SEP for op-
gmum combining becomes

7, andf,(-) is the pdf of the combiner output SINR. Note that P, =E {Pep\}
dAN,, -

~ depends on the desired and interference propagation vectors. oo o oo

Although the evaluation of (13) involves a single integration for = / / / Pe‘)\ “a(A)dArdAs .

averaging over the channel ensemble, it requires the knowledge JNo  JAs A 20)
E'quation (20) is exact and valid for arbitrary numbers of an-
tennas and interferers; however, it requires the evaluation of

1This proves the equality, observed also numerically by Monte Carlo simul
tion in [7, Table 1], of the expectations of the nonzero eigenvalueR efhen
the number of antennas is exchanged with the number of interferers.
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nestedV,,;,-fold integrals, which can be cumbersome to evaNote, from (8), that

uate for largeN;,. TO give an idea of the amount of time N N

needed forV,,;, = 2 (which allows us to investigate either dual o T _

combining with an arbitrary number of interferers or an arbi- ; A =Er ; Ai + NininNo

trary number of antennas with two interferers), the computation B N;

of (20) on a 450-MHz PC requires about 100 s. —E; Z i 4+ NoinNo (26)
Since the computation time for the numerical evaluation of part

(20) increases with the number of antennas and interferers, rig- _ .
orous bounds, as in [5], or approximate expressions, as in [#here we have used the fact thél — Ny, eigenvalues oR
are useful; unfortunately, the bounds in [5] are generally nafe identically equal to zero bjheorem land hence

very tight, and the approximation in [7] requires Monte Carlo Nowin
simulation. This motivates the need to derive simpler and tighter Z \; = Ejtr [f{} 4+ Nypin No- (27)
bounds or approximate expressions in closed form. Pt

In order to evaluate the expectation in (25), we observe that
) _ ) tr [f{} =tr CICH =3 ler ji|*. Hence, the random vari-
In this section, we derive a new upper bound for the SEP N 1. ’ o i

based on the knowledge of the pdf of the trace of the covariarigeY” = ir R} is chi-square distributed withV 4 N7 DOFs,

IV. UPPERBOUNDS ONSEP

matrix R.. with pdf given by (22). This completes the proof of the theorem.
Theorem 2: The SEP is upper bounded by n
o The expectatioft,{B(Y, 6)} is evaluated in Appendix D as
P, < l/ A(0)Ey {B(Y, 0)} d¥ 1) shown in (28) at the bottom of the next page, whﬁ’qeéa:) is
T Jo the exponential integral defined by (57) in Appendix D.

The bound (21) allows the evaluation of SEP for coherent
detection of MPSK modulation with optimum combining; the
numerical evaluation of it only requires a fraction of a second
on a PC. Note that the inequality in (24) becomes equality for
L y(NaN1)=le—y, if y >0 the case of single interferer (as well as for single antenna), and

fr(y) = { QAN ise. (22)  our bound gives the exact results.

whereA(6) is defined in (19), and” is a chi-square distributed
random variable witl2 N4 N; degrees of freedom (DOFs),
having pdf given by

In (22),T'(z) is the gamma function [13, eq.(8.310), p. 942], and V. APPROXIMATIONS ON THESEP

Nmin : ; P
In this section, some new results on the SEP approximations

will be presented. Here, we start from the approximation pro-

(y + N"};‘INO) sin” 4 eesicHoinfp posed in [7], and we derive a methodology which allows us
(23) to eliminate the need for Monte Carlo simulation in the cases

For a single-interferer scenario, (21) is an equality, i.e., it givé$ dual optimum combining with an arbitrary number of inter-

(y + —N"};‘“IAO ) sin’ @

B(y,0) =

the exact SEP foN; = 1. ferers, and of two interferers with an arbitrary number of an-
Proof: By applying the result in Appendix C to (18), wetenna elements. We prove that the approximation proposed in
have [8] is an upper bound of [7]; furthermore, we generalize the re-
o N L - sult of [8], and the generalized results are now applicable for the
P :l/ A(6) T sin” ¢ " caseN; > N, in addition toN; < N4.
e|A T Jo b sin29 + (‘MI’iF.(EI)
o Npin A. Approximation via Expected Eigenvalues
o ) In [7], it is proposed to approximate the unconditional cf of
Sl/ A(6) | — SCIEPSQKEDN | o v asky {"/’v|A<j”)} ~ "/’»YUE)\{/\} (jv).
T Jo Sin” f  SMEGE LT By adopting this approximation in (20), the SEP for MPSK
Z Ai is approximated as follows:
(24) P.~F(B,) (29)
where the equality is verified faV,,,;, = 1, therefore whereF () is given by
Nmin
1 [® Nomi sin? 6
F@ == [ a0 ] | 1 (30)
1 [° sin? 7™ Jo 71;[1 sin® 6 + cupsk 22
P. < - A(H)[E,\ ) RN dé. ) o
T Jo sin“ § 4 SMESK=D Ymin . :
VZ and theith element of3  is
A

=1

(25) Bai=FEE{N}+No, =1 Nuw ()
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Discussion canonical decomposition method [15], [16]. In the following,
Since R is semidefinite positive, the eigenvalues§34) will be denoted as approximation A, and we will show in
A A An, are real and nonnegative. Therefore fopection VI that it is in good agreement with the exact analysis

’ L) A . y

of (20) as well as simulation results. In general, approxima-

tion A requires knowledge df S\i}. In [7], the expectation

of the eigenvalues for some specific cases were calculated via

Monte Carlo simulation. For the case of dual optimum com-
32) bining (V4 = 2) with arbitrary N7, or the case of two inter-

is n-concave ireach/\l: when the other variables are fixed, butferers (v; = 2) with an arbitrary number of antenna elements,

despite this, the function is neither globally convex nor concave. X, | is obtained easily in a closed form using the reciprocity

Approximation (29) is obtained by replacing the expected L . . : . i
value ofg(-) with the function evaluated at the expected valué)srInCIpIe given inCorollary 1, together with the results of Ap

of the \;’s, i.e., pendix E.
E{g(A1 A2, AN )} B. Approximation via Equal Expected Eigenvalues

eachd, it is easy to verify that the function
Nmin s 2
[ sin“ 6

) E
sin® 0 + cvpsk 52

g()‘h )‘27 s 7)‘Nm;n; 9) S A(g)

=1

~g(E{M}E{},.. ., E{\N,..};0). (33)  Thedetermination d { J; }, in general, requires the evalua-
Now, if the functiong(-) were concave (convex), applyingtion of multiple integrals for each of thé\,,;,, — 1) eigenvalues.
Jensen’s inequality will produce an upper (lower) bound, buthis can be alleviated, at the expense of tightness, by the fol-
since (32) is neither concave nor convex, Jensen’s inequali@yving bound.
[14] cannot be applied. However, (29) gives good agreementTheorem 3: F' (B ,) is upper bounded as follows:
with the exact SEP expression (20) for typical parameters of F(B,) < F(Bp) (35)
interest. This may be due to the fact that, in the region wh L . . .
the pdf of the eigenvaluea is not negligible, (32) behave:\Rﬁ]erEF (8) is given in (30) and the'th element of3 is
essentially as an affine function. BB = ErNmax+ No,  i=1,...,Nnin.  (36)

Integrating both sides of (33) ovérand scaling byl /7, we Proof: The integrand of (34) can be written as
obtain Mo sin? 6
s YN 0) = A(6 - ‘ 37
P, :[E/\{Pe,\)\} 9(?/1 YN ) ( ) 11;[1 sin?f & CMP;S(ED (37)
1 [® wherey; = E{)\;} fori = 1,..., Nuyi,. By using (45) of
o [OENLEQ)EON 00 EEET e = N e gt
Ne) Nmin .92 Nimin
_1 / A0 I[ |—— b
T Jo -1 | sin® 0 + evpsk 5% sin2 6
. (Y1, Ynosni 8) < A(8) ,
—F (B.)- (34 ¢ a1 V)= sin? f + SesxEoNoin
Note that, given the expectation of the eigenvall SXL} L i
the last integral can be also derived in closed form by using a - (38)

Nuin NaN;—1 cMPSK NminEp \ ™
1 Nuin'\ (NaNp -1 NaN; -1 (m—n) E
Ev {B(Y,0)} = ———— E E 1) e e —n)!
v 1BV} = ry X{n_ ( n >< m >< ) sin” 0 =

. NaNr—1-m+l
m—n cMPSK Nmin Ep AT
1 ( Er NminNO)
1

sin’ 0 E;

N Nmin n— Noin NNy —1 (_1)NANI cm PSKéVIminEI) n
n m (n—m—1)! sin? 6

n—m-— cMPSK Nmin ED NaNj—1-m-—l
NminN
X { (—D)'(1—1)! < b + =5 0)

sin?
NoaiNr—1—-m
cmpsK Nmin ED AN
o NminN0>

+

_|_
sin® 6 Er

% e+(CMPSK NuinEp/E1 /sin® 0+ Nuin NO/EI)

cMPSK Nmin Ep
NminNO
x E Er 28
1( sin” # + E;r )}}} (28)
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. N,=2, SIR=10 dB , N,=4, SIR=10 dB, BPSK
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Fig.2. SEP for coherent detection of BPSK, quaternary PSK, and 8-PSK usifig. 3.  Comparison between upper bound derived in Section IV with the only
dual optimum combining{ 4 = 2) for N; =1, 2, and 4 an@IR = 10 dB.  previously known upper bound given by [5, eq. (13)] for the case of BPSK,

Excellent agreement between exact analysis and simulation can be observeyiR = 10 dB, N4 = 4, N; = 1, 4, and 8. Note that our upper bound is 4.8
. and 5.3 dB (at BEP of 10°) tighter and 4.8 and 7.4 dB (at BEP of 1) tighter
Using (8) than [5, eq. (13)] forV; = 4 and 8, respectively.
Nmin Nmin N.=2 8-PSK
> vi=Er ) E {/\1,} + NminNo (39) 10° i,
=1 1=1
:EINminNmax + NminNO (40)
where we have used (66) from Appendix E in deriving (40
Therefore
20 Ninin 107
Sin
.q(yh <oy YNmin § 9) < A(@) <Sin2 0+ cuprsk Ep ) .
E1Nmax+No &
41) o
Finally, by using (30), (36), and (41), it is straightforward tc ; N
show that (34) is upper bour)ded Ey(ﬂB). ] 1072 foi p—— = dB.1Y
The above theorem provides a rigorous proof that the a : © - -© Approximation A
proximate solution forN4 > N; proposed in [8], based on &£ Approximation B
.. . i |©=—® Upper Bound
heuristic assumptions, represents an upper bound of the st A Simulation
tion proposed in [7]. It also provides the generalization of th FT 1 1 1 1
approximation of [8], which is now valid for arbitrary numbers 10 S S S S .
of antennas and interferers. In the following, we will denote (3( -2 2 6 10 14 18
. S ; SNR [dB]
together with (36) as the approximation B. Note that approxima-
tion B does not require knowledge Ef{)\i . Fig. 4. SEP as a function of SNR for coherent detection of 8-PSK using dual
optimum combiningV4 = 2) for the case ofV; = 1 and 3 with SIR=5 and

10 dB.
VI. NUMERICAL RESULTS

In this section, we evaluate the exact SEP [given by (20)], tiirég. 2 shows the SEP as a function of SNR, M = 1, 2, and
upper bound [given by (21) together with (28)], the approxima, andSIR = 10 dB. The results show excellent agreement be-
tion A [given by (30) together with (31)] and the approximatiotween exact analysis and simulation. The curves also exhibit an
B [given by (30) together with (36)] derived in previous secerror floor when the number of interferehs is greater than the
tions, and compare them with Monte Carlo simulation resultarray DOFs, i.e.N4 — 1. Next, we compare in Fig. 3 the upper
The simulations were performed over 10 000 trials. We invesbound derived in Section IV with the only previously known
gate the effect of SNR defined &%, / Ny, signal-to-interference upper bound given by [5, eq. (13)]. Note that our upper bound
ratio (SIR) defined a&p /(N; - Er), the number of interferers, is 4.8 and 5.3 dB (at BEP of 10) tighter and 4.8 and 7.4 dB
and the number of antenna branches on the SEP. Unless otferBEP of 10*) tighter than [5, eq (13)] forV; = 4 and 8,
wise stated, we consider the coherent detection of 8-PSK wittspectively.
optimum combining. Fig. 4 shows the SEP with dual optimum combining for the

We first consider coherent detection of BPSK, quaternacase ofN; = 1 and 3 with SIR= 5 and 10 dB. Note that there
PSK and 8-PSK using dual optimum combinin§{ = 2). is the error floor for the case a¥; = 3 which decreases as
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. N,=3, 8-PSK N=3, SNR=10 dB, 8-PSK
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Fig. 5. SEP as a function of SIR for 8-PSR[, = 3, N; = 1 and 4,

SNR= 5, 10, and 20 dB. Fig. 7. SEP versus the number of antenna brandhedor 8-PSK,N; = 3,

SNR= 10 dB, SIR= 5 and 10 dB.
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Fig. 6. SEP versus the number of interferafs for case of 8-PSKN4 =4,  Fig. 8. SEP versus SNR for 8-PSK|, = 4, N; = 1, 3, and 5; and SIR
SNR= 10 dB, SIR=0, 5, and 10 dB. = 5 dB.

SIR increases. In order to further investigate the dependencalfersity provided by the increasing number of antennas (the
SEP on SIR, the SEP is plotted as a function of SIR in Fig. SEP in logarithmic scale is a approximately lineaNR). Note
for the case ofNV, = 3, with N; = 1 and 4, and SNR= 5, that our upper bound is quite close to the simulation results.
10, and 20 dB. Note that when the SIR is comparable with theFig. 8 shows the SEP as a function of SNR fép = 4,
SNR, the number of interferers plays a marginal role. FinallgIR = 5 dB, and N; = 1, 3, and 5. As expected, we note
the asymptotic SEP is limited by the thermal noise. the presence of error floor in the overloaded case-(N; >

The SEP versus the number of interferers is plotted in Fig./64 — 1 = 3). Moreover, whernV; < N4, the remaining DOFs
for N4 = 4, SNR= 10 dB, and three different values of SIR (0,(diversity order) isLp;y = N4 — N; and we expect an asymp-
5, and 10 dB). It can be seen that, when the array is overloadedic behavior for SEP proportional i/ (SNR)viv. This im-
the performance does not depend significantly on the numhmies that the curve of the SEP versus SNR approaches, for
of interferers; this behavior is accentuated for small values lafrge SNR, a straight line on a semilogarithmic scale with slope
SIR. The SEP versus the number of antenna branches is plottddv4 — N;)/10 decade/dB. Indeed, slopes of 3/10 decade/dB
in Fig. 7 for SNR= 10 dB, SIR= 5 and 10 dB, andV; = 3. for N; = 1, and1/10 decade/dB fotV; = 3 can be observed
The figure shows that the system is able to exploit the spatfedm Fig. 8. Similar results are shown in Fig. 9 fdf, = 4,
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If all the ¢jth elements ofA, a;;, are complex values with
zzzmzsd o real and imaginary part each belonging to a normal dis-
----------- tribution A/(0,1/2), then the fn x m) Hermitian matrix

W (m,p) is called ‘Wishart. Moreover, the joint pdf of the
ordered eigenvaluek = [\, Az, ..., Apn]T of W(m, p), with

A > Ay > --- > A, can be found in [17] as

: fasAa, o Am)
a
%) , . 1§t| / Wm(mfl) m i< m—1 mo -
107 | Simalation | T = . [T IT &i=X)
............... Lo ()l (m) i1 i=1 |j=it1
o (42)
10™  |..J0—© Approximation A
21 &---E Approximation B s H
/&~ —0 Upper Bound with
ASimulation LT
T n T T T H H m
107 R : : ~ _ —1)/2 P
2 2 6 10 14 18 22 26 30 Lp(p) = 7= D2 T (p - i)! (43)
SNR [dB] i=1
Fig. 9. SEP versus SNR for 8-PSK, = 4, N; = 3, SIR=0, 10, and 15
dB.
APPENDIX B

PROOF OFTHEOREM1
Ny = 3, and SIR= 0, 10, and 15 dB, and the asymptotic be-

havior of SEP for large SNR can be seen for all values of SIRO. In this appendix, we will prov@heorem Lising the results

f Appendix A, and derive the distribution of the eigenvalues of
the matrixR. of (7) for arbitraryN, andN;. Let us consider the
VII. CONCLUSION casesN4 < Ny andN4 > Ny, separately. The proof for the

In this paper, we derived the exact SEP for optimum corfermer case is straightforward application of Appendix A, but
bining of signals in the presence of multiple equal-power intef@ Prove the latter case, we need the following theorem.
ferers and thermal noise. Both caés < N; andN4 > N; Theorem 4: Suppose that\ € M,, , andB € M, ,, with
were investigated and, to validate the analysis, results were cdth= p. the (p x p) matrix BA has the same: eigenvalues as
pared to Monte Carlo simulation results. The exact analytidiie (n x m) matrix AB, counting multiplicity, together with an
SEP requires the solution of a multiple integral whose cordditionalp — m eigenvalues identically equal to zero.
plexity depends on the smaller &f4 and N;. This led us to ~ Proof of Theorem 4:See [18, p. 53]. u
derive upper bounds and approximations for reduced computaProof of Theorem 1:[Case . N4 < N;]: WhenN4 < Ny,
tional complexity. R can be related directly to a Wishart matrix, since the en-

For the case of a single interferer (as well as for a singIEeS of the random matrixC; are i.i.d. Gaussian random vari-
antenna) our bound becomes the exact result, and agrees #lg¢s with zero-mean, independent real and imaginary parts,
known results for the single-interferer case given in [3] and [4§ach with variance 1/2. So, we can write
Finally, the performance of the upper bound and the approxi- N,

I[“_nate formulas have been assessed by comparison with simula- R = Z cuc}LJ = CICJ{ = W(N4, Ny) (44)
ions.

The results show that, for typical cases considered in this ~
paper, our new upper bound is at least 4.8 dB tighter than theereW (N4, Ny) is a (N4 x N4) complex Wishart matrix.
only other available bound in the literature. The results alSdws, the joint pdf of the eigenvaluesEBfis given by (42) and
show that the approximation based on the knowledge of tt#3) withm = N4 andp = Nj. ]
expectation of the eigenvalues is close to Monte Carlo simula-Proof of Theorem 1:[Case II. N4 > N;]: WhenN,4 > Ny,
tion results; to this end, we derived a closed-form expression fgrcan still be related to the Wishart matrix, by meang bé-
the expectation of the eigenvalues in the cases of dual optimggam 4 In fact, by introducing the; x N4) matrix A £ C}L
combining with an arbitrary number of interferers, and of twand the (V4 x N;) matrix B £ C;, then the (V4 x N.4) ma-
interferers with an arbitrary number of antennas. Finally, the rg;, go — C;C! = R has the samé/; eigenvalues as the
sults show that the upper bound and approximation B prow?ﬁz] ) oAt .

1 x Ny) matrix AB = C;C;, and the additionalv, —

similar accuracy. s .
y Ny eigenvalues are equal to zero. Moreover, sifce > Ny,

C}LCI = W(N;,N,) is a (N; x Ny) complex Wishart ma-
trix, and thereforeR has total of N4 eigenvalues, wherd/;
eigenvalues have the joint pdf given by (42) with= N and

Let us defineA € M,, ,, with m < p, whereM,, , isthe , = N,, and the additionaN, — N; eigenvalues are identi-
set of the fn x p) complex matrices, anW(m,p) = AAT, cally equal to zero.

i=1

APPENDIX A
DISTRIBUTION OF EIGENVALUES OF THEWISHART MATRIX
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APPENDIX C and set the partial derivatives #f(x1, . . ., x,) to zero. We can
AN INEQUALITY observe that the conditiohH (.)/0z; = 0 requires that
Here we prove the following inequality: _ K, Vi — 1
Theorem 5: For anyK; > 0, K, > 0, andz; € Rt, where €~ ~ (21500 Tn) —le + Koz, J=1...,n.
Rt ={reR:r >0} (49)
n This equation is satisfied by choosing = S/n Vj, that, for
" x; € R, provides a maximum of the function in (46). To see
H _ Ky ) (45) that this cannot be a minimum, it is sufficient to let anegoing
oy | K+ % K, + Kan to zero, keeping finite. In this case (46) goes to zero, whereas
Z ; the right member of (45) remains finite. ]
Proof: We find the maximum of the function APPENDIX D
. o K, " CALCULATION OF E, {B(Y,0)}
(@1, 22,5 20) = S K+ % (46) Let K3 = NuminNo/Er, and Ky = (empsk NminEp/Er)
. . = ‘ /sin’ §, and then (23) can be written as
subject to the constraint LK Nowin
Y
. B.6) = | L] (50)
C(xl,...,wn):in—S’:Q (47) y+ Rst M

Using (22) and lettingg = v + K5 + K4 gives results as
hown in (51) at the bottom of the page. Note (52) and (53) at
a J;rrrf ee':IeT aa;:jl{;lggﬂj:itll_;?range s multipliers, we mtroduc%]e bottom of the page. Multiplying (52) and (53) gives (54) at
the bottom of the page. Substituting (54) into (51), and noting
H(zy,...,2y) = h(xy,...,2,)+€Clay,...,2,) (48) thatK; + K4 > 0 we obtain (55) at the bottom of the page,

R 1 oo K4 min NN o1 (o _
Ev{B(Y,0)} = B(y, 0 dy = —————— j i ——— CKa— K )NaM (z=K3—Ka) g
v{B(Y,0)} /0 (y,0) fy (y)dy T(NAN) /I(3+K4< ~ ) (z 3 4) € 2
(51)

N
K min = Nrﬂin n._—mn
(1_74) =Z< " )(—K4) . (52)

n=0
NaNr—1
L NaNp—1 FA Ny —1—
(z— K3 — KM= %" < A ﬂi > (—K3 — Ky)NaNitomym (53)
m=0
Nmin
<1 — K4> z — K3 — K4)NANI?1
z
Numin NaNy—1
Nmin NaNr—1 VAN —1—(m—n n —1-m —
= > ( n )( Aﬂ; >(_1)MAI I ()" (K 4 Ky NN pmen
n=0 m=n
N 2= NuN; -1
+ < mm)( A Wi ) (_1)N‘4NI—1—(m—n) (K4)n (Kg _|_K4)NANI—1—m Z_(n_m) (54)
n=1 m=0
e+(K3+K4)
Ey {B(Y,0)} = T(NaNT)

Ninin NaN7—1 NUN» — 1
{ 2 2 < m)( o )(—1>N"N"1‘(m‘"’ ()" (K + Ka) "M 7177 T (m—n 41, Ky + K

m
Ny
53

n=1

n

: NsNr—1
( mm) ( ! ni > ( I)AAAI tmen) (K4)" (K3 + K4)NANI X By (K3 2 } (55)
0

3
]
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wherel'.(k + 1,z) is the complementary incomplete gamma APPENDIX E .

function defined by [13 (8.350.2), p. 949] SOME RESULTSON MEAN EIGENVALUES OF W (1m, p)
100 i i i Ayn

To(k + 1733)@/ wbetdu, x>0, k=012, Since (42) is a product qf several terms in the fernt )\ ,
© the expected value of the eigenvalue¥¥{m, p) can be written
o (56) i a closed form for all values of. andyp.
andEx(z) is given by As an example, we found the following results:
Ek(a:)é / e Cdu, w>0, k=123 (57) em =1, p > 1:in this case it is straightforward to verify
A thatE /\1} =

The special case df = 1 is known as the exponential integral. * m = 2, p > 2: after some algebra, we get (63) as shown
Integrating (56) and (57) by parts, the recurrence relations can  at the bottom of the page.

be obtained as It can be shown thdE {5\1} can be further simplified to
To(k+1,2) =2 + ET.(k, ), k=1,2,3... (58) .
. e 1 < PP +3) 1 2 —k—1\(k
Ep(z) =~ ®D_ S _ Er1(2), E{hip= + .
k(x) T (k—].) (k—l) k 1(1?)/ { 1} 2p kzﬁz?])—k—l p_2 2
k=2,3,4,.... (59) ~ (64)
By solving the recurrence relations (58) and (59), we get To deriveE {/\2}’ we first observe that
k 1 m
e T B - ~
Po(k+ L) =kle™™ Y T w>0, k=012, Z)\i_tr [W(mm)] (65)
1=0 i=1
(=11 (60) wheretr [-] is the trace of the matrix. Then
Ey(2) ) m ) m
- Z[E{/\i} :[E{Z)\i}
x Qe (=D -1)z™ + El(x)}, =t =
{ ; =E {tr [W(m,p)} }
>0, k=1,2,3,... (61) ,
Using (60) and (61) results in (62) as shown at the bottom of the =EX> "N JaijPp=m-p  (66)
page. i=1 j=1
Ey{B(Y,0)} =———
Y T T(NANY)

1

l'(K3 T K4)NAN1—1—m+l

}

Nmin NaNr—1 —
Nmin NsNr -1 r—l=(m—-n n
X{Z 2 < n )( o )(—DW KLY X (m =)ty
n=0 m=n =0
Nmin n—1 NiN
=y Nrﬂin NANI -1 (_1) o n
£ () (M) e

" l (=1)' (1 = 1)l (K5 4 Ky)NaNtmm=lg (K o Ky) VAN om ot KD By (K + Ky)

(62)
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wherea; ; is theijth element ofA with W (m,p) = AAT,
and the last equality is due to the following normalization (se
Appendix A):

Finally, by using (66), we get
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