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Absnocr-In this paper, we derive an exact erpression for the symbol 
error probability (SEP) for coherent detection of M-sry PSK signals uslng 
array of antennas with optimom combining In a Rnylelgh fading envimo- 
mint  The proposed malytirsl framework is based on the theory of OF 
thogonsl polynomlslr and we $!'e an effective technique to derive the SEP 
iwolriog only one integral with fioitc integration limib. The result i s  gem- 
eml and v.Ud for an i rhlmry number of meiving mtenms or cc-channd 
interferers. 

I. INTRODUCTiON 

Adaptive arrays can significantly improve the performance of 
wireless communication systems by weighting and combining 
the received signals to reduce fading effects and suppress inter- 
ference. In particular, with optimum combining (OC) the re- 
ceived signals are weighted and combined to maximize the out- 
put signal-to-interference-plus-noise ratio (SINR). 

Closed-form expressions for the bit error probability P E P )  
have been derived for the single interferer case under the as- 
sumption of Rayleigh fading for the desired signal in [I] .  BEP 
expressions with Rayleigh fading of the desired signal and a sin- 
gle interferer are given in [2]. 

With multiple interferers of arbitrary power, Monte Carlo 
simulation has been used to determine the BEP [I].  To avoid 
Monte Carlo simulation approximations have been presented in 
[3,4] for the case of equal-power interferers. However, the ap- 
proximation of [3] still requires Monte Carlo simulation to ob- 
tain mean eigenvalues (a table is provided in [3] for some cases), 
and the approximation of [4] has been proposed when the num- 
ber of interferers is less then the number of antenna elements. In 
[SI, upper bounds on the BEP of optimum combining were de- 
rived given the average power of the interferers. Unfortunately, 
these hounds are generally not tight. Recently a tighter bound 
based on different approaches and Laguerre polynomials have 
been derived in [6], in the context of multiple-input multiple- 
output (MIMO) systems [7]. 

In this paper, starting from the eigenvalue distribution of 
Wishart complex matrices, we first derive the SEP expression 
for coherent detection of M-ary PSK using OC in the presence 
of multiple uncorrelated equal-power interferers as well as ther- 
mal noise in a flat Rayleigh fading environment. However, this 
requires the evaluation of multiple integrals, with the number of 
integral depending on the minimum of the number of antennas 
and interferers. To alleviate this problem, we develop an effi- 
cient method to derive the SEP. Our new approach, based on a 
classical technique involving orthogonal systems, leads to ex- 
act solutions that require only the evaluation of a single integral 
with finite limits. 
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11. SYSTEM DESCRIPTION 
We consider optimum combining of multiple received signals 

in flat fading environment with coherent demodulation, where 
the fading rate is assumed to be much slower than the symbol 
rate. Throughout the paper (.)T is the transposition operator, 
and (.)t stands for conjugation and transposition. The received 
signal at the NA-element array output consists of desired signal, 
NI interfering signals, and thermal noise. AAer matched filter- 
ing and sampling at the symbol rate, the array output vector at 
time k can be written as: 

d k )  = &cobo(k) + Z W ( ~ ) ,  

~ 4 4  = & x s , , b j ( k )  + n(k), 

(1) 

with the interference plus noise term 

NI 

j=l 
(2) 

where EO and E1 are the mean (over fading) energies 
of the desired and interfering signal, respectively; CD = 

and j* interference propagation vectors, respectively; bo(k) 
and b; (k )  are the desired and interfering data samples, respec- 
tively, and n(k) represents the additive noise. We model CD 

and cl,; as multivariate complex-valued Gaussian vectors hav- 
ingE{q,} = E{cl,j} = 0 audE {cDc/,} =E {c~,jcj,~} =I,  
where I is the identity matrix. The interfering data samples, 
b;(k) for j = 1,.  . . ,NI, can be modeled as uncorrelated zero- 
mean random variables, and without loss of generality bo(k) and 
b j ( k )  are assumed to have unit variance. 

The additive noise is modeled as a white Gaussian random 
vector with independent and identically distributed (i.i.d.) ele- 
ments with E (n(k)} = 0 and E {n(k)nt(k)} = NoI, where 
No/2 is the two-sided thermal noise power spectral density per 
antenna element. 

In the following, R denotes the short-term covariance matrix 
of the disturb s m ( k ) ,  conditioned an all interference propaga- 
tion vectors, given by 

T [QI, ..., CD,N*] andcl,j = [c1,j,1, ..., cl,j.N,IT arethedesired 

R =  En.b,(lc){zm(k) . ~ m ( k ) ' }  (3) 

and Ex{.} denotes expectation with respect to X. 

with OC can therefore be expressed as [l] 
The (maximum) SINR at the output of the NA-element array 

= E~CI ;R- 'C~ ,  (4) 

where it is important to remark that R, and consequently also 
the SINR y, varies at the fading rate. 
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The matrix R-I can be conveniently expressed as UA-'Ut 
where U is a unitary matrix and A is a diagonal matrix whose 
elements on the principal diagonal are the eigenvalues of R, de- 
noted by (Al,. . . ,ANA). Hence, the SINR given in (4) can be 
rewritten as: 

where Pep represents the SEP conditioned on the random vec- 

tor X; that now the ranges ofintegrals start from 0 since we 
are considering the p.d.f. of unordered eigenvalues. Moreover, 
in 191 it is shown that 

The vector U = Utco = [ul, ..., uNJT has the same dishibu- 
tion as cD, since U represents a unitary transformation. 

where CMPSK = siu'(n/M) and 8 = n ( M  - 1)/M and 

NA - N- 

(13) 

Expression (11) is exact and valid for arbitrary numbers of 
antennas and interferers; however, it requires the evaluation of 
N--fold integrals, which can be cumbersome to evaluate for 
large N e n .  We will show how this analytical difficulty can be 
avoided using the properties relating to the Vandermonde ma- 
triX. 

1 Then, it is convenient to write the matrix R as sin' 8 

R = E ~ R  + N,I, (6) 

where R = C I C ~  is an (NA x NA) random matrix where CI 
defined by 

(7) 

is an (NA x N I )  matrix composed of NI interference propagation 
vectors as columns. The eigenvalues of R can be written in IV. EFFICIENT EVALUATION OF SEP FOR oc 
terms of eigenvalues of R, denoted by ( X I , .  . . , X N ~ ) ,  as We first note that the term n,"?-' Inyz+l (z;- xj)] in 

(*) ( I  I) can also be seen as the determinait of the Vanderminde X i  = Elxi + No i = 1, ..., NA, 
matrix V(z1,.  . . , z ~ - )  given by 

and therefore the SINR given in (9 becomes: 

\x;-l x;- l  _ _ .  N--I) 
Note that the eigenvalues vary at the fadine rate. XN- - - 

w e  now investigate the statistical properties of(Xl,. , . , XNA); 
this is a problem regarding the eigenvalues distribution of com- Therefore, the p.d.f. also be as 

plex Wisbart matrices [8 ] .  By usiig some results-of [9] deal- 

min{NA, NI} unordered eigenvalues of R is NI. 

K N,. ing with the ordered eigenvalues X = [ X I , .  . . ,  AN.,]^, it is 
straight forward to show that the joint p.d.f. of the first N,,,in d 

fx(zl,.  . . ,zN-) = - IV(z,,. . . , zN-)I2.  n e ~ " ' = ~ - - ~ ~ .  

(15) 
For what follows it is convenient to introduce the function1 

i=, N*"! 

where N,, d max{NA, NI} and K is the normalizing con- 
given by = ,with ?N,.(N-) = 

rN*(N--1)/2 nNm(N,,,, *=1 - i)!. The additional NA - N,i. 
eigenvalues of R are identically equal to zero. 

#"(Nnun-l) 

F N d ( N - ) P N n u n ( N - )  

111. DERIVATION OF THE SYMBOL ERROR PROBABILITY 

The SEP for optimum combining in the presence of multiple 
co-channel interferers and thermal noise in a fading environment 
canbewrittenas [9] . , 

m m 

P, =Ei{PeIi} =/ . . . J  P.li(").f~(")dxl...d2N.., 
0 0 

(11) 

and using (IS),  the expression ( I  I) becomes 

The evaluation of ( I  7) is difficult because the integrand does not 
factor and the dimension of integral depends on the minimum of 
the number of antennas and interferers. We now give an efficient 
method to reduce the SEP to a single integral with finite limits. 
The approach is based on a classical technique commonly used 
in mathematical physics involving orthogonal systems. 

'The dependence of the parameters Eo, EI and No is suppressed to simplify 
the notation. 
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Let us first consider a more general problem of evaluating tem generated by pe(z),  into ~ ( Z I , .  . . , ZN-; 8)  defined by 

where t ( x , 8 )  2 0 on every subset of the support of x i  with 
positive measure, and the average is over the distribution of 
the eigenvalues given by (15). This problem can be efficiently 
solved by using some classical results from orthogonal polyno- 
mials as follows. 

For each 8 E [0 ,0] ,  let 'P,"-- be the space of all polynomials 
with degree less than or equal to N& - 1 with measure 

&(z) = z(z,8)sN--N-e-zdz, (19) 

equipped with the inner product and norm defined respectively 

(f,g) (e) P / f(z)g(z) z(z,  +N--"e-=dz (20) 

llflli /=f(z)f(z) z(z,  o ) ~ N - - ' v - ~ - z ~ ( ~ I )  

Since z(z, 8) 2 0 on every subset of the support of i; positive 
measure, so is z(s,8)zN--N-e-r > 0, and hence the ele- 
ments 1,z, z2,. . . ,zN*-l of the Hilbert Space P:- are li- 
early independent. This implies that there exists an orthogonal 
system {&,(z,e)}:z-l with 

by 
m 

0 

0 

d,(o) =~n,o (e )+g , , l (s )z+ . . .+~n ,n (e )~" ,  (22) 

by means of elementary row operations, more precisely, succes- 
sively subtracting linear combination of its rows from another 
row. Since the determinant is invariant to such row operations 

lv(Zl,...,ZN-)l = l v ( Z l , . .  .,ZN-;8)1. (27) 

We now let SN- be the set of all permutations of integers 
{O, 1,. . . , Ndo - l}, and let U E SN- denote the particular 
function U : (0,1,. . . , N,i. - 1) -+ (ul, uz,.  . . ,uN.,) which 
permutes the integers {O, 1, . . . , N,i. - l}. The determinant can 
be written as 

where 

(29) 
for even permutation, 
for odd permutation. sgn{u} = { +l -1 

Substituting (27) and (28) into (25) gives 

The orthogonal system {&(z, 8)}:3-' can he obtained by a 
k - S c h i d t  procedure using the 
Appendix A. 

as shown in the fact that {8n(2, 8)}k-1 are Orthogonal, (30) be- 
comes 

Theorem I :  
= KIT:Z-lllbIIi, 

(24) 
This completes the proof of Theorem I .  

rem, 

signals using optimum combining with an NA-element antenna 
array in the presence of NI uncorrelated equal-power co-channel 
interferers and thermal noise in Rayleigb fading is given by 

Using Theorem 1, we immediately obtain the following theo- 
where K has been already defined and n4-l  114,11~ is the 
product norm squares of all the elements in a particular orthog- 
onal system generated by pe(z). 

fieorem 2: ne SEP for coherent detection of M+,,.,, PSK 

Prooj 

2 

(31) 

(25kbere A(6)  is given by (13) a18 C(8) 4 n 2 - I  Ilq4&, with 
Nmj,, = min{NA, NI}, is the product norm squared of all the 

For any . given 8 E [0,0], the Vandermonde matrix elements in a particular orthogonal system generated by pe(z) 
V(zl , .  , . , XN-) can be transformed, using the orthogonal sys- of (19) using z (z ,  8) = $(z, 8) .  

Ex (z n z(ii,O) } = ~/om."JdmIv(z1!...,5N-)I ' 

P. = ; K e  Jd A ( W ( 8 )  d e ,  
N- 

i=l 
. n . ( X i ,  o)z;--N-e-='dz, 
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Thus the derivation of the SEP for coherent detection of M- 
ary PSK using OC, involving the N-fold integrals in (1 I), essen- 
tially reduces to a simple single integral over 9 with finite limits. 
The integrand is a product of two functions A(B) and C(0); the 
former function A(0)  involves trigonometric functions and is 
given by (13) and the latter function C(0) can be evaluated eas- 
ily based on the approach illustrated in Appendix A. Finally, the 
SEP expression (3 1) can be efficiently and rapidly evaluated us- 
ing standard mathematical packages, even for large number of 
antennas andor co-channel interferers, where previous studies 
relied on highly time-expensive simulations. 

V. NUMERICAL RESULTS 

In this section the performance in terms of SEP of adaptive 
arrays with OC is investigated by the analytical approach given 
in Theorem 2, with different choices of the signal to noise ratio 

N.=S. SIR=lO d0.8-PSK 

- 

Fig. 2. The SEP as B function of SNR for NA=5, 8-PSK, SIR=IO dB; the 
(SNR) defined as EnINo, the ratio between the desired received 
signal power and the total interfering power (SIR) defined as 
ED/(Nl . El), the numher of interferers, and the numher of an- 

of intelfererS ranges I to 

tennas. 
Fig. I shows the SEP as a function of SNR, when the number 

of antenna branches has heen fixed to NA = 6, with NI = 4 in- 
terfering signals and SIR=IO dB. Several modulation formats 
are considered BPSK, QPSK, 8-PSK, 16-PSK and 32-PSK. 
In the figure are also shown some semi-analytical results, ob- 
tained by generating the random propagation vectors, comput- 
ing the SINR by (4) and then the error probability by means 
of [9, eq. 171. Since the analytical framework proposed in 
this work provides an exact result in the same hypotheses, we 
find perfect agreement between analysis and semi-analytical re- 
sults. Moreover, the comparison between different modulation 
formats shows that if we fix, for example, a target SEP at 10W3, 
BPSK requires a SNR of about 2 dB, and this value rises to 
about 6 dB with QPSK, and more than 14 dB with higher level 
formats. 

Fig. 2 shows the SEP with 5 antenna branches as a function of 
SNR when the SIR is fixed to I O  dB and coherent detection of 

8-PSK is considered. The number of interfering signals ranges 
from 1 to 8. The figure shows that when the number of inter- 
ferers becomes equal to or larger than the number of receiving 
antennas, the curve exhibits an error floor. This can be easily ex- 
plained by remembering that adaptive array systems have Nk- 1 
degrees of freedom to cope with interfering signals and thermal 
noise. When the number of interfering is greater than the array 
degrees of freedom, the system is not able to null out the inter- 
ferers and, for large values of SNR, the performance is limited 
by the interfering power. The opposite is true when the numher 
of antenna branches is greater than the number of interferers; 
here the additional Lr,iV = N A  - NI degrees of freedom are used 
to mitigate thermal noise and desired signal multipath fadindg, 
and this provides an asymptotic behavior for SEP proportional 
to l/(5'NR)L* (in other words, a diversity degree Lo," with 
respect to fading of the useful signal). 

Fig. 3 shows the SEP as a function of SIR with 6 antenna 
branches and 8-PSK. The number of interferers ranges from 2 
to 6, and the SNR is varied from 5 to I O  dB. The figure shows 
that, when the interference power becomes almost comparable 
with the thermal noise power, the number of interferers does not 
play an important role. Moreover, the comparison between op- 
timum combining and maximal ratio combining (MRC) shows 
that, as expected, when the interference power is small, the per- 
formance of the two schemes is not much different; on the other 
hand, when the SIR decreases, the performance with optimum 
combining is strongly dependent on the number of interferers 
and tends to he closer to that with MRC for as NI increases. 

VI. CONCLUSIONS 

In this work, starting from an expression requiring the nu- 
merical evaluation of nested integrals and by using the theory 
of orthogonal polynomials, we obtained a simple and numeri- 
cally stable solution for the exact symbol error probability with 
optimum combining of signals. We assumed coherent defectipn 

power interferers and thermal noise in a flat Rayleigh fading en- 
vironment. The new approach makes possible the exact SEP 

N,=6 N , 4 ,  SIR.10 60 
1 00 

10.' 

10-2 

lo-' 

L Y) 10- 

10-1 

104 

10-7 

O lo lZ l4 l6 2o 22 24 26 28 30 
SNR [dBl 

Fig, ,, ne SEP as a function ofSNR for NA=6, NI=s, of M-ary PSK in the presence of multiple uncodated equal- 
modulation formats are considered BPSK, QPSK, 8-PSK, I6.PSK and 32- 
PSK. Semi-analytical results are also provided (symbols). 
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N.;B.B-PSK 

1 6 '  

a Y ul 

10-2 

I! 2 4 8 8 to 12 14 18 18 ,b 
SIR [dB1 

Fig. 3. The SEP BS B funcrion afSlR for NA-6, 8-PSK, S N R d  and 10 dB, and 
N1=2.4 and 6; comparison between OC and MRC. 

evaluation for wireless systems with arbitrary number of inter- 
ferers and antenna elements. 

APPENDIX A: DERIVATION OF THE ORTHOGONAL SYSTEM 

As pointed out earlier in Section IV, the polynomials 
1,z, z2,. . . ,zN--l in the Hilbert Space Pi-, with inner 
product ( f , g )  (8) and norm l l f [ l e  given by (20) and (21) re- 
spectively, are tiearly independent. Therefore we can apply 
the Gram-Schmidt procedure to obtain the orthogonal systems 
as follows. 

The normalization of the polynomial 1 gives the function 
+o(x,S) as follows 

1 - +o(s, e) = 1 .  (32) 

The polynomial 2: produces the second hnction by 

In general, the polynomial x" for n = 0,. . . , Nmin - 1 trans- 
forms into 

Now, adopting the following notation for polynomials 

6"(zr8).= +",o(O)++n,l(o) x+... ++","(B) s", (35) 

the norm square of +,,(x. 8)  can he expressed as 
n n  

where 

Z k + N m - N .  -z Gk(@) Jam -e $(z,O)dz. (38) 

A closed form expression for Gh(8) can be derived as [lo, eq. 
3.353.51 

G ~ - N - + N ~ ( ~ ' )  = C(B)'eec(')k! [C(S) (1 + k) + (39) 
+r (-1 - k, C(W I No r (-k, m)] 

where C(8) = + 2. 
The coefficients +n,m(8) can he calculated iteratively using 

the following formula, which we derive as follows. Substituting 
(35) into (34) and using the inner product (20) with z(z ,  8) = 
$(x, 8)  we have 

. .  
Comparing (35) and (40), we obtain the m* coefficient of the 
n* polynomial as 

with bn,"(8) = 1 and m = 0,. . . , n - 1 
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