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Abstract—This letter addresses the problem of evaluating the bit Il. BOUNDS ON THEBEP AND ITS INVERSE

error outage (BEO), i.e., the outage probability defined in terms of . . . .
bit error probability, in a Rayleigh fading and shadowing environ- The instantaneous BEP expression for binary phase-shift

ment. We consider coherent detection of binary phase-shift keying keying (BPSK) in an additive white Gaussian noise channel is

with maximal ratio combining (MRC). As an example application, given by [3] P, (Vo) = Q(v/2710t).r The BEP for coherent

tﬂe BEO in a log-normal Shfagég'gg e”V',\r/lOSg‘?m is an]?lyéz_eddind detection of BPSK with MRC in a multipath environment is

the Improvement Interms o ue to IS quantl led in air- : : :

ferent shadowing environments, obtgmed by averaging the mstgntaneous'BEP over the.fast
_ o _ fading process. This can be obtained by using the alternative

. éﬂdeXhTermls—Blt error outage (BEO), diversity reception, expressjon for the instantaneous BEP together with the charac-

ading channe. teristic function method (see, for example, [4], [9]) as

N

I. INTRODUCTION 1 [? in? 6
P (7)) =~ / (%) do 1)
ERFORMANCE for diversity systems in terms of symbol T Jo sin” ¢ +7

multipath r mulichannel ating) has been extenanely st GE7E7 1 the branch-SNR and i the dversity ordet. The
?orm of (1) allow us to derive invertible BEP bounds.

in the literature, with direct applications to antenna diversity By adopting the Chernoff-Rubinbound Q(x) < —a?/2

and Rake reception [1]-[9]. However, the explicit expression f ) . S
the inverse BEP (i.e., signal-to-noise ratio (SNR) as a functii , [11] and averaging over instantaneous SNR distribution we

of BEP), required for many important problems related to diéjj—btaln the following upper bound on the BEP:

ital mobile radio, is hot known in general even in cases where 1 N .
closed-form BEP expressions are available. One noticeable ex- P, (7) < <__) < —- )
ample is provided by the bit error outage (BEQO), i.e., the prob- L+7

Y
ability that the BEP exceeds a maximum tolerable level. Tmlshis expression is widely used in the coding literature (see, for

definition of outage probability is appropriate for digital com- xample, [12] and [13, p. 718]) to bound the pairwise error prob-

mu_nlcatlon_sys_tems where fast fading 1S supenr_nposed ona Slg)k\ﬁ\fllty over Rayleigh fading channels. In that context, the expo-
fading. Derivation of such a BEO requires an inverse BEP ex- i .
4 : : . o nentN represents the Hamming distance of the coded sequences
pression that is not straightforward to obtain as it involves a nu- . . . .
. . and plays the same role as the diversity order in multiple an-
merical roots evaluation.

In this paper, we analyze the BEO for multichannel recepticgtnanna reception. The result (2) derived by the Chernoff-Rubin

with maximum ratio combining (MRC) in a Rayleigh fading an neq)uillt()i;:;)n P;;T[qfvedlgé]? If:frt]?; v(\)/;l/\/zv;i::\?etthhi li)r(:]ljnd
shadowing environment. We first derive upper and lower boun éx - ¢ » P- i y we .
. . ; . groved bound for the BEP of BPSK over Rayleigh fading
on the inverse BEP which are not only simple and explicit func-
tion of the target BEP, but also sufficiently tight falt values of 1 1 N 1
SNR. We then replace the implicit inverse BEP expression with P,(H) <= ( _) < —- 3)
the above mentioned bounds which alleviates the analytical dif- 2\1+75 2y
ficulty in BEO derivation and avoids numerical root evaluations.

1The Gaussia)-functionQ(x) A2 (1/v27) f:“ exp (—y?/2) dyisre-
lated to the complementary error function@yz) = (1/2)erfe (x//2).

2Unless otherwise stated, the terms BEP and SNR will be used in the fol-
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10 : : ——— ‘ In fact, it is clear from the definitions thatP, r, (7)
e e U | 4 \ : and P,y () are continuous and strictly decreasing
in 7. Therefore the inverse functiond’, ;(P;) and
P i (Py) exist and have unique solutions for each
Py € [0,S(N)] = [0,P,(0)] C [0,Pu(0)]. Hence,
y1 = P,/ andy;; = P, can be obtained explicitly by
inverting (5), (3) and (4) to get (7a) and (7b). The fact that
P, .(7), P,(7) and P, ;y(¥) are continuous and strictly de-
creasing and’, 1, < P, < P,y implies thaty; <7* < 7p.
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etk X TS
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‘ --------- Chernoff-Rubin bound ﬁ
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| —— Improved Chernoff—Rubin boun:
— - - Pasupathy et al. bound

Pasupathy ot al. bound \\ [ll. BouNDs ON THEBIT ERROROUTAGE
— — — Propost lower boun R

\F\ For analog communication systems outage probability is typ-

ically defined in the SNR sense; that is, the probability that the

‘ mean SNR (averaged over fast fading) falls below a minimum

5 0 5 10  acceptable value, called the target SNR. The BEO defined here

SNR (dB) as the probability that BEP exceed a maximum tolerable level

is more appropriate for digital mobile radio. We consider mo-

Fig. 1. 1(7), lower and upper bounds for BPSK wiffi = 4. bile radio applications wherevaries, due to for example shad-
owing, at a rate much slower than Rayleigh fading [2]. Thus, the

Note that (2) and (3) are not asymptotically tight. The be®EO is defined as

known asymptotic behavior of (1) for BPSK is derived in [3]

-20 -15 -10°

e .2 N
and [15] as P,(P}) =P {l/ (s;n_@_) do > Plf} . (8
B~ 2 @ T
b ~ —_N
v Since the BEP decreases with(8) is equivalent to

whereS(N) = (1/22V+1)(2Y). In [15] it was observed that PP

(4) is also an upper bound. Note that it gives an asymptotlcally P, (D) = / p=(€) dé 9)
tighter result than the bounds (2) and (3). Next we give a new 0

concise proof of this fact using (1). By noting the& sin” § < . . i i

1, and replacingin? ¢ with its minimum value, 0, in the denom- Whereps(¢) is the probability density function (pdf) af Anal-
inator of the integrand function of (1), we immediately obtai}Sis Of (9) requires the inverse BEP expression and the bounds in
P, () < (S(N)/7"). This suggests that we can also obtain QS) and (7) on the inverse BI_EP can be u;ed to obtain the bounds
lower bound forP, (7) by replacingsin?(4) with its maximum O (9). Note thaps(&) in (9) is nonnegative, and hence we ob-
value, 1, in the denominator of the integrand function of (1§aln the lower and the upper bounds on fhgfor coherent de-

ection of BPSK signals as

giving
_ S(N _ P, (PSP, (P <P,y (P} 10
Pam 2 < p). © 2B s LB s bo ) (0
(147)
where
Fig. 1 provides a comparison among previously discussed .
upper bounds together with the new lower bound for BPSK Y 8
with N = 4. In general, (3) or (4) can be closer to the exact Por () = 0 p(&) d¢ (112)
solution depending oV and on theP, of interest (e.g., 10% or o
10~*). Hence, (5) provides us a lower bourid, . (7); whereas P,y (Py) = / p5(§) dé. (11b)
J0

the minimum between (3) and (4) provides us an upper bound,
P, 7(7). Note that both lower and upper bounds &n(7)

are invertible. FrompP, (%) and P, (%) the required SNR, A Log-Normal Distributed Shadowing
3+ = P (Py), to achieve a target BEP withy € [0, S(N)]

can be lower and upper bounded by Now we consider the case of a shadowing environment in

which# is log-normal distributed with parameterss ando3,
¥ (PF) <7 (P)) <735 (P) (6) (i.e., 73z = 10 log,,7¥ is a Gaussian r.v. with mean;g and
variancery) [2]. Since the logarithm is monotoni®, (P;) is

where lower and upper bounded, respectively, by
_ S(N)TVY _
*(PF) = -1 7 — 101log * (P
YL ( b ) |: P[:( :| ( a) Po,L :Q <.u’dB Zgul;) [rYL ( b )]) (12)

1/N 1/N —k *
7?] (P;T) — min { <2;1T> _1, [S;)iy)] } . (7b) Po,U :Q <,udB — 10 logm [’YU (Pb )]) . (13)

0dB
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Fig.2. P, . andP, ; versusuqs for BPSK withoqs = 8, P = 10~2 and
N = 24, 8, 16. The exactP, for N = 1 is also shown.

IV. NUMERICAL RESULTS
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Fig. 3. P, . andP, ; versusuqp for BPSK witho s = 12, P} = 10732
andN = 2, 4, 8, 16. The exactP, for N = 1 is also shown.

The results are useful for the design of digital radio systems with

In this section we evaluate the lower and upper bound on t#ersity in shadowing environments.

BEO for the case of log-normal distributed shadowing using
(12) and (13). Fig. 2 show#, 1, and P, iy versusyugp, both
for coherent detection of BPSK withyp = 8 for P = 1073
andN =1, 2, 4, 8, and16. Note that for the case d¥ = 1
(i.e., without antenna diversity), the exact BEO can be derived.[?]

(1]

In fact, since in this case the BER(Y) = 1 (1 - 117) is 3]
invertible, we derive the following expression for the BEO (4]
pa — 10logyq %

P(P)=Q Rl (14)
0dB
In general, by using (12) and (13) the improvement in terms[G]
of BEO due to MRC as a function of the diversity order is
quantified. 0

For afixedP,, we now can obtain lower and upper bounds on
the requirement on the parameteiz corresponding to the me-
dian value of the shadowing level. This is useful for the design of (€]
digital radio systems with diversity reception. For example, the
maximum distance of the radio-link or the cluster-size for cel- [9]
lular systems can be estimated when the path-loss law is known.

Similar results are given in Fig. 3 with a requirggl = 103 [10]
andogg = 12 (e.g., for indoor communications) and =
1, 2, 4, 8,and16. [11]

[12]
V. CONCLUSIONS

In this work, new lower and upper bounds on the BEO have
been derived from a new lower and known upper bounds on thid3]
inverse BEP, respectively, for multichannel reception with MRC
and BPSK modulation. As an example of application to digital[14]
mobile radio, the BEO in a log-normal shadowing environmen
was analyzed. By using our results, we quantify the impact o
the diversity order and shadowing parameters in terms of BEO.

5]
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