
IEEE COMMUNICATIONS LETTERS, VOL. 7, NO. 1, JANUARY 2003 15
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Abstract—This letter addresses the problem of evaluating the bit
error outage (BEO), i.e., the outage probability defined in terms of
bit error probability, in a Rayleigh fading and shadowing environ-
ment. We consider coherent detection of binary phase-shift keying
with maximal ratio combining (MRC). As an example application,
the BEO in a log-normal shadowing environment is analyzed and
the improvement in terms of BEO due to MRC is quantified in dif-
ferent shadowing environments.

Index Terms—Bit error outage (BEO), diversity reception,
fading channel.

I. INTRODUCTION

PERFORMANCE for diversity systems in terms of symbol
and bit error probability (BEP) (both averaged over the

multipath or multichannel fading) has been extensively studied
in the literature, with direct applications to antenna diversity
and Rake reception [1]–[9]. However, the explicit expression for
the inverse BEP (i.e., signal-to-noise ratio (SNR) as a function
of BEP), required for many important problems related to dig-
ital mobile radio, is not known in general even in cases where
closed-form BEP expressions are available. One noticeable ex-
ample is provided by the bit error outage (BEO), i.e., the prob-
ability that the BEP exceeds a maximum tolerable level. This
definition of outage probability is appropriate for digital com-
munication systems where fast fading is superimposed on a slow
fading. Derivation of such a BEO requires an inverse BEP ex-
pression that is not straightforward to obtain as it involves a nu-
merical roots evaluation.

In this paper, we analyze the BEO for multichannel reception
with maximum ratio combining (MRC) in a Rayleigh fading and
shadowing environment. We first derive upper and lower bounds
on the inverse BEP which are not only simple and explicit func-
tion of the target BEP, but also sufficiently tight forall values of
SNR. We then replace the implicit inverse BEP expression with
the above mentioned bounds which alleviates the analytical dif-
ficulty in BEO derivation and avoids numerical root evaluations.
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II. BOUNDS ON THEBEPAND ITS INVERSE

The instantaneous BEP expression for binary phase-shift
keying (BPSK) in an additive white Gaussian noise channel is
given by [3] .1 The BEP for coherent
detection of BPSK with MRC in a multipath environment is
obtained by averaging the instantaneous BEP over the fast
fading process.2 This can be obtained by using the alternative
expression for the instantaneous BEP together with the charac-
teristic function method (see, for example, [4], [9]) as

(1)

where is the branch-SNR and is the diversity order.3 The
form of (1) allow us to derive invertible BEP bounds.

By adopting the Chernoff–Rubin4 bound
[3], [11] and averaging over instantaneous SNR distribution we
obtain the following upper bound on the BEP:

(2)

This expression is widely used in the coding literature (see, for
example, [12] and [13, p. 718]) to bound the pairwise error prob-
ability over Rayleigh fading channels. In that context, the expo-
nent represents the Hamming distance of the coded sequences
and plays the same role as the diversity order in multiple an-
tenna reception. The result (2) derived by the Chernoff-Rubin
inequality can be improved by a factor of 1/2 using the bound

[14, p. 123].5 In this way we have the im-
proved bound for the BEP of BPSK over Rayleigh fading

(3)

1The GaussianQ-functionQ(x) (1=
p
2�) exp (�y =2) dy is re-

lated to the complementary error function byQ(x) = (1=2)erfc x=
p
2 .

2Unless otherwise stated, the terms BEP and SNR will be used in the fol-
lowing to denote the mean BEP and the mean SNR (averaged over the fast
fading).

3We will use the terms “path” and “branch” interchangeably since our anal-
ysis applies to spatial diversity (i.e., antenna diversity) as well as time diversity
(i.e., Rake reception).

4We will refer to as Chernoff–Rubin bound to reflect also the contribution of
Herman Rubin, although it is usually referred to as Chernoff bound [10].

5Sometimes this is improperly referred to as the Chernoff bound.

1089-7798/03$17.00 © 2003 IEEE



16 IEEE COMMUNICATIONS LETTERS, VOL. 7, NO. 1, JANUARY 2003

Fig. 1. P (
), lower and upper bounds for BPSK withN = 4.

Note that (2) and (3) are not asymptotically tight. The best
known asymptotic behavior of (1) for BPSK is derived in [3]
and [15] as

(4)

where . In [15] it was observed that
(4) is also an upper bound. Note that it gives an asymptotically
tighter result than the bounds (2) and (3). Next we give a new
concise proof of this fact using (1). By noting that
, and replacing with its minimum value, 0, in the denom-

inator of the integrand function of (1), we immediately obtain
. This suggests that we can also obtain a

lower bound for by replacing with its maximum
value, 1, in the denominator of the integrand function of (1),
giving

(5)

Fig. 1 provides a comparison among previously discussed
upper bounds together with the new lower bound for BPSK
with . In general, (3) or (4) can be closer to the exact
solution depending on and on the of interest (e.g., 10 or
10 ). Hence, (5) provides us a lower bound, ; whereas
the minimum between (3) and (4) provides us an upper bound,

. Note that both lower and upper bounds on
are invertible. From and the required SNR,

, to achieve a target BEP with
can be lower and upper bounded by

(6)

where

(7a)

(7b)

In fact, it is clear from the definitions that
and are continuous and strictly decreasing
in . Therefore the inverse functions and

exist and have unique solutions for each
. Hence,

and can be obtained explicitly by
inverting (5), (3) and (4) to get (7a) and (7b). The fact that

, and are continuous and strictly de-
creasing and implies that .

III. B OUNDS ON THEBIT ERROROUTAGE

For analog communication systems outage probability is typ-
ically defined in the SNR sense; that is, the probability that the
mean SNR (averaged over fast fading) falls below a minimum
acceptable value, called the target SNR. The BEO defined here
as the probability that BEP exceed a maximum tolerable level
is more appropriate for digital mobile radio. We consider mo-
bile radio applications wherevaries, due to for example shad-
owing, at a rate much slower than Rayleigh fading [2]. Thus, the
BEO is defined as

(8)

Since the BEP decreases with, (8) is equivalent to

(9)

where is the probability density function (pdf) of. Anal-
ysis of (9) requires the inverse BEP expression and the bounds in
(6) and (7) on the inverse BEP can be used to obtain the bounds
on (9). Note that in (9) is nonnegative, and hence we ob-
tain the lower and the upper bounds on thefor coherent de-
tection of BPSK signals as

(10)

where

(11a)

(11b)

A. Log-Normal Distributed Shadowing

Now we consider the case of a shadowing environment in
which is log-normal distributed with parameters and
(i.e., is a Gaussian r.v. with mean and
variance ) [2]. Since the logarithm is monotonic, is
lower and upper bounded, respectively, by

(12)

(13)
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Fig. 2. P andP versus� for BPSK with� = 8,P = 10 and
N = 24; 8; 16. The exactP for N = 1 is also shown.

IV. NUMERICAL RESULTS

In this section we evaluate the lower and upper bound on the
BEO for the case of log-normal distributed shadowing using
(12) and (13). Fig. 2 shows and versus , both
for coherent detection of BPSK with for
and and . Note that for the case of
(i.e., without antenna diversity), the exact BEO can be derived.
In fact, since in this case the BEP is

invertible, we derive the following expression for the BEO

(14)

In general, by using (12) and (13) the improvement in terms
of BEO due to MRC as a function of the diversity order is
quantified.

For a fixed , we now can obtain lower and upper bounds on
the requirement on the parameter corresponding to the me-
dian value of the shadowing level. This is useful for the design of
digital radio systems with diversity reception. For example, the
maximum distance of the radio-link or the cluster-size for cel-
lular systems can be estimated when the path-loss law is known.

Similar results are given in Fig. 3 with a required
and (e.g., for indoor communications) and

and .

V. CONCLUSIONS

In this work, new lower and upper bounds on the BEO have
been derived from a new lower and known upper bounds on the
inverse BEP, respectively, for multichannel reception with MRC
and BPSK modulation. As an example of application to digital
mobile radio, the BEO in a log-normal shadowing environment
was analyzed. By using our results, we quantify the impact of
the diversity order and shadowing parameters in terms of BEO.

Fig. 3. P andP versus� for BPSK with� = 12, P = 10
andN = 2; 4; 8; 16. The exactP for N = 1 is also shown.

The results are useful for the design of digital radio systems with
diversity in shadowing environments.
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