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On  the  Capacity of Radio  Communication  Systems 
with  Diversity  in a, Rayleigh  Fading  Environment 

Abstract-In this  paper, we study  the  fundamental  limits  on  the  data 
rate  of  multiple  antenna  systems  in  a  Rayleigh  fading  environment. 
With M transmit  and M receive  antennas,  up  to M independent  chan- 
nels  can be established  in  the  same  bandwidth. We study  the  distri- 
bution  of  the  maximum  data  rate  at  a  given  error  rate  in  the  channels 
between  up  to M transmit  antennas  and M receive  antennas  and  deter- 
mine  the  outage  probability  for  systems  that  use  various  signal  pro- 
cessing  techniques. We analyze  the  performance  of  the  optimum  linear 
and  nonlinear  receiver  processor  and  the  optimum  linear  transmitter/ 
receiver  processor  pair,  and  the  capacity  of  these  channels.  Results 
show  that  with optimum  linear  processing  at  the  receiver,  up  to M / 2  
channels  can be established  with  approximately  the  same  maximum 
data  rate as  a  single  channel.  With  either  nonlinear  processing  at  the 
receiver or optimum  linear  transmitterheceiver  processing,  up  to M 
channels  can  be  established  with  approximately  the  same  maximum 
data  rate  as  a  single  channel.  Results  show  the  potential  for  large  ca- 
pacity in  systems  with  limited  bandwidth. 

I. INTRODUCTION 

I N  a radio communication  system in a multipath envi- 
ronment,  such as  a mobile radio or indoor wireless sys- 

tem,  the  communication  channels  between multiple trans- 
mit and/or receive antennas  can  have  low cross correla- 
tion even when the transmit or receive antennas  are closely 
spaced. Thus,  communication  systems,  with appropriate 
signal processing techniques,  can  use  antenna diversity 
(e.g.,  space,  direction,  or polarization) to establish mul- 
tiple independent  channels within the same  bandwidth be- 
tween the transmitters and  receivers, thereby achieving 
large capacity despite the multipath. 

One signal processing technique that can  be used to per- 
mit multiple simultaneous signals in the  same  bandwidth 
is optimum  combining at the receiver [ 11. With  optimum 
combining, the signals received by the  antennas  are  com- 
bined to enhance desired signal reception and suppress 
interfering signals,  and thereby maximize  the signal-to- 
noise-plus-interference power in the  output.  With opti- 
mum combining using M antennas,  up to M - 1 interfer- 
ing signals can  be nulled with desired signal reception, 
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radio  system. The signals  received by the  antennas  at  the  base  station  are 
combined  to  enhance  desired  signal  reception  and  suppress  interfering  sig- 
nals from  other  cells, thereby allowing for frequency  reuse in adjacent  cells. 
In this  paper,  we  consider  using  optimum  combining,  plus  other  tech- 
niques, to permit  frequency reuse within  the  same  cell,  thereby  achieving 
even  greater  capacity.  Specific  details  on  the  implementation of optimum 
combining  with  frequency  reuse  within  the  same  cell  are  presented  in [2] 
for  indoor  radio. 

thus permitting up to M simultaneous signals in the same 
bandwidth.  However,  optimum  combining is only the best 
Linear processing  technique  for the receiver, and other 
techniques can be used to further improve  performance. 
In particular, since  all signals are detected at the receiver, 
interference cancellers can  be  used to eliminate the inter- 
ference in the output signals, i.e., performance  can  be 
improved  through nonlinear techniques. In addition,  cod- 
ing can further improve  performance.  Finally, perfor- 
mance  can also be  improved by cooperation  between 
transmit antennas,  i.e., appropriate combining of the sig- 
nals prior to transmission (with multiple transmit antennas 
at the remotes). In this paper, we study two basic systems, 
1) communication  between multiple remotes  and  a  base 
station with multiple antennas,  and 2) communication be- 
tween  two  users,  each  with multiple antennas.  For these 
systems, we determine  the information-theoretic capacity 
and the efficiency index  (maximum data rate for  a  given 
error rate) in bits/cycle  (bits/s/Hz)  for different process- 
ing techniques. Note that since the multipath changes with 
position, the capacity (and efficiency index) is a  random 
variable. Therefore, we study the distribution of the ca- 
pacity and present results for  given  outage probability. 
Efficiency index results are  given  for  a  outage prob- 
ability at  a lop4 error rate. We  assume  independent flat 
(nondispersive) Rayleigh fading between  antennas  and 
constrain the total transmit power  per user (remote or base 
station). With M transmit and M receive antennas, we note 
that there can  be  up to M independent  channels  between 
the transmitter(s) and receiver. Therefore, in case l ) ,  for 
a  base station with M antennas, we study the maximum 
data rate per remote as up to M remotes access the system. 
In case 2), for  a receiver with M antennas, we study the 
maximum total data rate for the channels  between the re- 
ceiver  and  a transmitter with up to M antennas. 

For  communication  between  remotes  and  a  base station 
with M antennas, we first study the efficiency index  per 
remote (at a  outage probability) with optimum linear 
processing at the base station receiver. Results show that 
the efficiency index  per  remote decreases only slightly as 
up to M / 2  remotes access the  system.  However, with M 
remotes, the efficiency index  per  remote is dramatically 
lower. We then study the efficiency index per remote with 
optimum nonlinear processing  (maximum likelihood de- 
tection) at the base station receiver. Results show that the 
efficiency index  per  remote decreases only slightly as up 
to M remotes  access  the  system.  For  example,  with  four 
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antennas at  a base  station,  for  a  outage probability 
at a  error rate with binary phase-shift keying, the 
required average received signal-to-noise ratio is 13 dB 
with  a single remote  and 15 dB (only 2 dB higher) with 
four cochannel remotes. Finally,  we study the Shannon 
capacity of this system. 

For  communication  between  two  users,  one  with M an- 
tennas and  the  other  with  up to M antennas (with a total 
transmit power constraint on  each  user), we study the  ef- 
ficiency index with optimum  linear  processing at  one re- 
ceiver,  the efficiency index  with  the  optimum  linear trans- 
mitter and receiver processing  pair,  and  the  system 
capacity. The efficiency index  and capacity per  channel 
(transmit antenna) for  these three cases  are  similar to the 
efficiency index  and capacity per  remote  for the three cases 
with  the multiple remote  system, considering the  power 
constraint.  For  example,  'with  the  optimum  linear trans- 
mitterheceiver processing  pair  and four antennas at the 

. receiver, for  a l o p 3  outage probability at a l o p 4  error rate, 
the required average received signal-to-noise ratio is 17 
dB  with one quaternary phase-shift keyed signal trans- 
mitted by one  antenna  and 18 dB (only 1 dB higher) with 
four signals transmitted by four antennas. 

In Section 11, we study the capacity of  the  system with 
a  base station and multiple remotes. The capacity of the 
system  with  two users is analyzed in Section 111. A sum- 
mary and  conclusions are presented in Section IV. 

11. BASE STATION WITH REMOTES 

A.  System Description 

Fig. 1 shows  a radio system consisting of a  base station 
with M antennas  and N ( N  < M ) remotes,  each  with  one 
antenna. We  assume 1) ,a transmit power constraint on 
each  remote  and  the  base  station, 2 )  independent  Rayleigh 
(nondispersive) fading between  each  remote  and  base  sta- 
tion antenna, 3)  no  direct  communication  between re- 
motes (i.e., except  through  the  base  station),  and 4) in- 
dependent additive Gaussian noise at each  base station 
receive antenna. 

The system  can also be represented in matrix  form as 
in Fig. 2 .  The N independent input data streams  can  be 
expressed in vector  form,  with  the nth input vector given 
by 

A,  = (1) 

where  the ai,, are  complex.'We assume L-level quadrature 
amplitude  modulation (QAM) such that the real and  imag- 
inary parts of ai,, take  on values of [ f 1 ,  f 3 ,  * * - 2 f ( L  
- l ) ] / u d  where u: = E [ l ~ ~ , , 1 ~ ]  = 2 ( L 2  - 1 ) / 3  (for 
signals with unity average  power).  The input vector is 
multiplied by the  transmitter  matrix P to generate the 
transmitted vector PA,. Since we assume  no direct com- 
munication  between  remotes, P is a  diagonal  matrix, i.e., 
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U 
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Fig. 1 .  Radio  system consisting of a base station with M antennas  and N 
remotes,  each  with one antenna. 
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UM 

Fig. 2. System represented  in  matrix form. 

( 2 )  

Thus,  the transmitted power of the ith signal (data stream) 
is given by 

Pi = [P tPI i i ,  i = 1 ,  N 

where [ PtPI i i  is the ith diagonal  element  of P t P  and  the 
superscript t denotes  complex  conjugate  transpose.  We 
constrain the transmit power  of  each  remote  such that 

Pi I 1,  i = 1,  N. - (4 )  

The signal vector received by the M antennas at the  base 
station is  the transmitted signal vector multiplied by the 
channel  matrix C, CPA,, plus additive  Gaussian noise. 
Under the assumption of independent  Rayleigh  fading,  the 
elements of the M X N channel  matrix C, are complex 
Gaussian  random  variables, i.e., the real and  imaginary 
parts of C, are Gaussian  random variables with  zero  mean 
and  a variance of 1 (for equal average transmit and receive 
powers).  The noise vector v, is given by 

where  are  independent,  complex  Gaussian  random 
variables,  i.e.,  the real and  imaginary  parts are Gaussian 
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more, this optimum W also minimizes an upper  bound on 

For  a QAM signal with  optimum  linear processing at 
the receiver, the MSE in each  of  the output signals is given 

DETECTOR the  symbol  error rate [3]. 

W 
OUTPUTS 

N x M  
M DETECTOR N by 141 

- 
Fig. 3 .  A linear receiver processor. MSEi = = [ I  + PtCtCPp]zil, i = 1, N (8)  MSE. 

u d  

random variables with  zero  mean  and variance 0: /2.  The 
received signal vector S,  is then given by 

S, = CPA, + v,. ( 6 )  

The M received signals are proces:ed at  the receiver to 
generate the output signal vector A,, (an estimate  of the 
transmitted signal vector). 

The system  shown in Fig. 2 is  similar to that studied 
for digital radio [3]-[6]. In [3], a single-channel ( N  = M 
= 1 ) digital radio system  with  frequency selective fading 
(dispersion) is studied.  The  performance of equalization 
and maximum likelihood sequence estimation is ana- 
lyzed, using the probability distribution of the efficiency 
index as the  performance  measure. The efficiency index 
is an estimate of the maximum  number of bits per cycle 
of bandwidth that can be achieved in a  given  system and, 
in [3], it is obtained by using  a  Chernoff  bound on the 
error rate for  given signal-to-noise ratio,  channel  band- 
width, and signaling rate with  quadrature  amplitude mod- 
ulation. In [4], the analysis of [3] is extended to digital 
radio with dual polarization ( N  = M = 2 ). The structure 
of the  optimum transmitter and receiver matrix filters is 
studied, and the information-theoretic capacity and effi- 
ciency index  with  these filters is analyzed. In [5], the re- 
sults of [4] are  extended to  the N X N channel matrix, 
and in [6], the results are  extended to the M X N channel 
matrix. For  our  system,  one  major difference from digital 
radio is that we do not have  dispersive  fading.  Therefore, 
in our  study, we use  the  extensive analysis of [3]-[6], 
simplifying the results for  nondispersive fading. 

B. Optimum  Linear  Processing 
We first consider linear  processing at  the  base station 

receiver. The  linear  processor is shown in Fig. 3 where 
the received signals are  combined  using the receiver N X 
M matrix W to generate the output signals for detection. 
Thus, at the output of the  linear  processor,  the nth output 
vector is given by 

2, = W[CPA, + v,] . (7) 

The detected symbols A, are  determined  from  the real and 
imaginary parts of 2, using a decision rule with decision 
levels at [0, f 2 ,  * * - , * ( L  - 2 ) ] / u d  (forL-level QAM). 

We consider an  optimum  linear  processor as optimum 
in the sense of  minimizing  the  mean-squared  error MSE 
of each of the N output signals.  Note that the receive ma- 
trix W that minimizes  the MSE is  the  same  matrix  as that 
which  maximizes  the signal-to-interference-plus-noise ra- 
tio  (optimum  combining, as studied in [l]) [7]. Further- 

where p ( = u;/   u:)  is the received signal-to-noise ratio at 
each  antenna  without fading (i.e.,  the signal-to-noise ra- 
tio  averaged  over the Rayleigh fading). For each of the N 
signals, the  maximum data rate that can be supported at a 
given  symbol  error rate P, (the efficiency index) is then 
given by [4] 

Since C t C  is the  sum  of  the  magnitude  squared of com- 
plex Gaussian  random variables with  zero  mean  and  a 
variance of $, CtC is a chi-squared random variable with 
2M  degrees  of  freedom. Thus,  the probability density 
function of CtC is given by 

From (1 1) and  (12),  the probability density function of Z, 
can be shown to be  given by 

where 

Thus,  the probability distribution of Zl can  be calculated 
as 

Since with N = 1 optimum  linear  processing is the  same 
as maximal ratio combining, (15) can  also  be  determined 
from the maximal ratio combining equations in [8]. 

For N 2 2, the values of  the Pi's ( i  = 1, N )  for the 
maximum efficiency index  per  remote  could not be easily 
determined.  Therefore,  implementation of a  system  that 
optimizes  the Pi's does not appear to be practical. Since 
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Fig. 4. The efficiency index  per  remote  versus p for a  outage  prob- 
ability at  a  error  rate for optimum  linear  processing at the  base 
station receiver; N remotes  and M antennas  at  the  base station. 

one practical technique is to adjust the transmit powers 
such that the received signal power  for  each signal is con- 
stant,  we first examined  this  case.  For this system, 

min [ c +C Ijj 
i p .  = 

' [C+CIii 
, i = 1, N.  (16) 

Results, however,  show that the efficiency index is slightly 
higher  when Pi  = 1, i = 1, N .  Therefore, in the analysis 
below, we only present results for Pi  = 1 ( i  = 1, N ), 
noting that the results do not appear to be significantly 
affected by small variations in Pi. 

For N 1 2, the distribution of Zi was  determined by 
Monte  Carlo simulation. For  given N ,  M ,  p ,  and P, ,  the 
Zi's ( i  = 1 , N ) were calculated for lo4 randomly gener- 
ated C matrices. The distribution of these Zi's then deter- 
mined the outage probability. 

outage probability at a lop4 error  rate, with N = 1,  2, 4, 
8,  and M = 1,  2, 4, 8,  16. Analytical results are  shown 
for N = 1, and  computer simulation results are  shown  for 
N 1 2. For fixed M ,  the efficiency index  per  remote de- 
creases as N increases (i.e., as more  remotes access the 
system). Fig. 4 shows that the  decrease in the efficiency 
index is small as N is increased from  1 to M/2 ,  but for 
N = M ,  the efficiency index decreases dramatically.  This 
is because,  for N << M ,  N random signal vectors in an 
M-dimensional  space (with M antennas) usually have low 
cross correlation (i.e.,  interference), and  therefore, Zi is 
not significantly affected by the interference. However,  as 
N approaches M (in particular,  for N > M/2) ,  N random 
signal vectors become increasingly likely to have  high 
cross correlation (interference),  and  thus, Zi is greatly re- 
duced by the interference. 

Finally, considering implementation of optimum  linear 
.processing [ 11, [ 2 ] ,  we note that the  optimum W can  be 

Fig. 4 shows  the efficiency index versus p for  a 

determined  without  knowledge  of  the C matrix by means 
of iterative techniques, such as the LMS  algorithm [7]. 
Also, for base station to remote transmission, W* (where 
* denotes complex conjugate) can  be  used as the trans- 
mitter matrix to obtain the same efficiency index as with 
remote to base station transmission. It  should  be  empha- 
sized that the  major  concern for implementation of the 
techniques in this paper is the fading rate. The processors 
must operate fast enough to track the fading [l], [2],  and, 
if C must be  known,  the  channel must be  probed often 
enough so that the fading can be tracked.  Thus, imple- 
mentation may be much easier in indoor radio systems 
(where the users are stationary or walking) than in mobile 
radio systems  (where the users can  move at vehicular 
speeds). Also, it should  be  noted that our results are  based 
on the assumption of nearly independent fading at each 
antenna. With multipath in buildings,  the fading statistics 
of two antennas are (usually) nearly independent  when  the 
antennas  are separated by more than a  quarter  wave- 
length.  Furthermore, in addition to  space  diversity,  direc- 
tion [9], polarization [lo],   [ l l] ,  and field  [8] diversity can 
be  used to achieve nearly independent fading at each an- 
tenna  without increasing the physical size  of  the  antenna 
array. 

C. Optimum  Nonlinear  Processing 
We now consider nonlinear processing at the  base sta- 

tion receiver. We  consider  an  optimum nonlinear proces- 
sor as optimum in the  sense  of  minimizing the probability 
of error in detecting A,. Thus,  the  optimum nonlinear pro- 
cessor is a  maximum likelihood detector  [6], [ 121. For  a 
maximum likelihood detector,  the  error rate is approxi- 
mately  given by 

p ,  e-dkinpI4 (17) 

= min 1 CP(A, - A,) I . (18') 

where 
2 

An, A, 
An #An 

Thus, given C ,  P, and L (number  of levels for  QAM), 
we can calculate the  eTor rate at a  given p by exhaustively 
searching all A, and A, for d;, and calculating P, from 
(17).  The efficiency index  per  remote is then 2 ,log2 L. 
However, this procedure requires extensive computer  time 
for  large L and N .  Therefore,.  we restrict our study to 
quarternary phase-shift keying  QPSK ( L  = 2)  with N = 
1  and 2, and binary phase-shift keying BPSK with N = 
1,  2, and 4. Note that for  BPSK,  the data symbols ai,, in 
(1) are  real, with values of f 1. 

We  determined the p required for QPSK ( Zi = 2 ) and 
BPSK ( Z i  = 1 ) by the  following  method.  Using  Monte 
Carlo  simulation,  for  given N and M, lo4 random C ma- 
trices were  generated.  For  each  matrix, d;, was  deter- 
mined by exhaustive search of the possible combinations 
of data symbols for  either  QPSK  or  BPSK,  and  the p re- 
quired for  a  given P, was calculated from  (17).  From the 
distribution of required p ,  we determined the p for  a  given 
outage probability. 
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TABLE I 

PROBABILITY AT A ERROR RATE, WITH OPTIMUM NONLINEAR AND 
OPTIMUM LINEAR PROCESSING 

AVERAGE  SIGNAL-TO-NOISE RATIO REQUIRED FOR A io-3 OUTAGE 

Required p (dB) 

BPSK QPSK 

nonlinear  linear nonlinear linear 

39.G 30.6  43.0  43.0 

23.0  23.0 ?G 4 2G.4 

2-1 I  38.3 ?9 I 41.8 

13.3 13.3 IG.7 IG.7 

13.11 16.7 17 3 20.5 

15.1 40.0  42.7 

8 7  G.7 10.1 10.1 

7 . 1   8 . 3  1.0.5 11.2 

7 .5  I O  8 14.0 

1.5 1.5 4.9 4.9 

As  in Section 11-B, the Pi’s ( i  = 1 ,  N )  that  maximize 
di in  are difficult to  calculate.  Therefore, we study only 
the  case of Pi = 1 ( i = 1 , N ). Note  also that for  the 
optimum  nonlinear  processor,  we  calculated  the  error  rate 
for  the  output  vector  rather  than  the  output  symbols as 
studied for  the  optimum  linear  processor.  Thus,  for  given 
C, the efficiency index  is  the  same  for  all  remotes,  unlike 
with optimum  linear  processing. 

Since results were  obtained  only  for QPSK and BPSK, 
we study the p required for  these  two  modulation tech- 
niques,  and  compare  the required p to  optimum  nonlinear 
processing to that with  optimum  linear  processing. For 
QPSK,  the required p for  optimum  linear  processing  with 
Zi = 2 can  be  obtained as in Section 11-B. For BPSK (Zi 
= 1 ), the required p with optimum  linear processing can 
also be obtained as in  Section 11-B, but with the efficiency 
index given by 

Zi = $log2 ( 1  + 3 p i / ) lnP , ( ) ,  i = 1 ,  N (19) 

rather than (9). 
Table I shows  the p required for a outage proba- 

bility at a lop4 error  rate  for QPSK and BPSK with given 
N and M .  For fixed M ,  the required p increases  as N in- 
creases with both  optimum  linear  and  nonlinear  process- 
ing.  However, with optimum  nonlinear  processing, up to 
M remotes  can  access  the  system with only a few dB in- 
crease  in p ,  while with optimum  linear  processing, p in- 
creases  dramatically with N = M .  Thus,  optimum nonlin- 
ear  processing is significantly better  than  optimum  linear 
processing only  for N > M/2.  

Finally,  considering  implementation of optimum non- 

linear  processing,  we  note  that  optimum  nonlinear  pro- 
cessing requires that C be known at  the  receiver. Thus, 
the channel must be probed prior  to  data  transmission. 
However,  performance  close  to  that of optimum  nonlinear 
processing can be achieved  without a knowledge of C 
through the  use of optimum  linear  processing  followed by 
interference  cancellation  (such  as  with a bootstrap  can- 
celler [13]), but  such a system  has not been  studied.  Also, 
we  note  that  we  cannot  use  optimum nonlinear processing 
for  base  station  to  remote  transmission  and,  therefore,  the 
efficiency index  for  base  station  to remote transmission 
without coding  can only be  as high  as  that of optimum 
linear  processing (Section 11-B). 

D. Capacity 
Finally,  we  consider  the  distribution of an  upper bound 

on  the  capacity  normalized  to  the  bandwidth  for  the  chan- 
nels between  the  remotes  and  the  base  station. If the re- 
motes’ signals  were weighted and  combined  prior  to 
transmission  to  the  base  station,  the  normalized capacity 
can be determined by analyzing  the  independent  channels 
in C [4]. From [4], for  given C, the  normalized capacity 
of the ith independent  channel  is  given by 

Zi = log2 (1 + p h i p i ) ,  i = 1,  N (20) 

where X i  is  the ith eigenvalue of C’C. Since  the  channels 
are  independent (i.e., no  cross-coupled  interference), Pi 
= 1 ( i  = 1 ,  N ) maximizes  the  capacity  in  each  channel. 
Thus,  for  given C, the  average  capacity  per remote is 
given by 

Without the  combining of the  signals  prior  to transmission 
(i.e., with each  remote  transmitting  only its signal),  the 
average  capacity  per  remote  is  less  than or equal  to  (for 
N = 1 ) that  given by (21).  Thus, (21) upper bounds the 
average capacity per  remote. 

For N = 1, X I  = C’C, and, therefore,  from (15), the 
distribution of the  normalized  capacity  is  given by 

f2’l - A k  

Thus,  the  normalized  capacity  at p’  is the  same  as the 
efficiency index  for a error rate without  coding  at p 
= p’ 1 In ( P , / 2 )  I / l s  (or p = p’ + 8.2 dB). 

For N 2 2, Monte  Carlo  simulation was again used to 
determine  the  distribution of the  average normalized ca- 
pacity. For given N ,  M ,  and p ;  the Zi’s and I,  / N were 
determined  for lo4 randomly generated C matrices,  and 
the distribution of Z , / N  was calculated. 

Fig. 5 shows  the  upper bound on the  average normal- 
ized capacity per  remote  at a outage probability ver- 

, sus p for N = 1 ,  2 , 4 ,  8 and M = 1 ,  2 ,  4, 8,  16. For fixed 
M ,  in  most cases  the  capacity  increases  with N ,  since  as N 
increases, I,  / N  is  averaged  over  more  channels.  Note that 
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Fig. 5. Upper  bound on the  average  normalized capacity per  remote  versus 
p for a outage  probability  with N remotes  and a base  station  with 
M antennas. 

this increase in capacity with N is greatest for small M 
where the fading effects are  the  strongest.  However, for 
fixed M, as N increases,  the interference also increases, 
which  reduces  the  capacity.  Whether the combined effect 
of  the  averaging  and interference increases or decreases 
the capacity depends on N ,  M ,  and p .  Fig. 5 shows that 
the interference dominates (with the capacity reduced)  for 
N = M ,  M 1 4, and that the reduction in capacity in- 
creases with p .  

111. Two USERS WITH MULTIPLE  ANTENNAS 
A.  System  Description 

Fig. 6 shows  a radio system consisting of two  users, 
one  with M antennas  and  the  other  with N ( N  5 M ) an- 
tennas. We  assume 1) a transmit power constraint on  both 
users,  2)  independent  Rayleigh (nondispersive) fading be- 
tween the transmit and receive antennas,  and 3) indepen- 
dent additive  Gaussian noise at each receiver antenna. 
With multiple antennas for both  users, the same  maxi- 
mum data rate can  be  obtained in both transmission direc- 
tions. We study only  the  case of linear processing at both 
the transmitter and receiver. 

The  system  can  be represented in matrix  form as in Sec- 
tion 11. The differences with  the  system  of Section I1 are, 
first, with multiple transmit antennas,  the input signals 
can be combined prior to transmission, i.e., P need not 
be diagonal. Second,  with  the  power constraint 

N c [ P t P ] , ,  = 1, (23) 
i =  1 

the total transmit power is 1 / N  times the total transmit 
power of the system of Section 11. Third, we are interested 
in the maximum total data rate for  given C and the distri- 
bution of this data rate, rather than the distribution of the 
maximum data rate in  each  channel. 

Fig. 6.  Radio  system consisting of two  users,  one with M antennas  and  the 
other  with N antennas. 

B. Optimum  Linear  Processing  at  the  Receiver 
We first consider optimum  linear processing at the re- 

ceiver. The analysis is similar to that of Section II-B, ex- 
cept that we calculate 

N 

z, = c zi 
i =.1 

where Zi is given  in (9), and we have the power constraint 
of (23).  For N = 1, tlie results are, of course, identical 
to those of Section II-B. 

For N L 2 ,  we again  need to consider  the Pi's.  As in 
Section II-B, the Pi's for  maximum total data rate could 
not be easily determined. Thus, implementation of a sys- 
tem that optimizes the Pi's does not appear practical. One 
practical method, since we are interested in maximizing 
the total data rate, is to adjust the transmit power of each 
antenna proportional to its received signal power  (similar 
to the processing method  used for optimum  linear pro- 
cessing without interference). Thus,  the transmit powers 
are  given by 

Results, however, show that the maximum total data rate 
is slightly higher  when  all the transmit powers  are  equal, 
i.e., Pi = 1/N ( i  = 1, N ) .  Therefore, in the analysis 
below, we present results only for equal transmit powers. 

For N 1 2, the distribution of Z, was  determined by 
Monte  Carlo simulation. For  given N ,  M ,  p ,  and P,, the 
Is's were  determined  for lo4 randomly  generated C ma- 
trices and the distribution of Z, was calculated to deter- 
mine  the  outage probability. 

Now consider  the  average  maximum data rate per chan- 
nel Z, / N  at a  given  outage probability. For fixed M ,  the 
signal-to-noise ratio per channel is decreased by 1 / N  with 
N transmit antennas.  Thus, it might  be  expected that the 
p required for  a given Z, /N  would increase linearly with 
N .  However,  there  are  two  other effects. First,  as N in- 
creases,  the Z , / N  is averaged  over  more  channels,  which 
decreases the p required for  a  given Z, / N at a  given  out- 
age probability. Second,  as N increases,  the interference 
increases, yhich increases the p required for  a  given Z , / N .  
Which of these two effects dominates  depends  on N and 
M as shown  below. 

Fig. 7 shows  the  average efficiency index  per  channel 
( Z s / N )  versus p for  a  outage probability at a 
error  rate, with N = 1, 2 ,  4, 8 and M = 1, 2 ,  4, 8, 16. 
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Fig. 7 .  The average efficiency index  per  channel  versus p for a lo-’ out- 
age probability  at a error  rate for optimum  linear  processing  at one 
receiver; N transmitting  antennas  and M receiving antennas. 

With large M / N ,  the averaging effect is seen to dominate. 
For  example,  with M = 16, the p required for a  given 
Z , / N  increases by  only 2 dB  when N is increased from 1 
to 2. However, as N increases further,  the interference 
dominates.  Thus,  with fixed M ,  the p required for  a  given 
Z, / N  increases linearly with N for N I M/2, but for N 
= M ,  the required p is much higher.  This is because of 
the greatly increased probability of high cross correlation 
between N random signal vectors as N approaches M ,  i.e., 
for the same  reason that in a multiple remote  system Zi is 
greatly reduced as N approaches M (as shown in Fig. 4 
and discussed in Section 11-B). 

C. Optimum Transmitter/Receiver  Processing 
We now consider the  combining of the input signals 

prior to transmission. In this case, we are interested in the 
optimum  linear  transmittedreceiver  processor pair where 
the processor  pair is optimum in the  sense of minimizing 
the total MSE at the receiver output.  For  given C, with 
the jointly  optimum P and W, the total MSE is of the  form 
[61 

N N 

where the Xi’s  are  the eigenvalues of CtC and 

N c Pi = 1. 
i =  1 

At this point, we could, of course,  determine  the Pi’s that 
minimize the total MSE. However, we wish to maximize 
the total data rate,  which is given by [from (9), (lo), and 
(26)l 

N 

1 + 1.5pPiXi//ln 21). (28) 

,“(dB, 

Fig.  8. The average efficiency index  per  channel  versus p for a lo-’ out- 
age probability at a error  rate for the  optimum transmittdreceiver 
matrix  pair; N transmitting  antennas  and M receiving antennas. 

The  Pi’s that maximize Z, can be found by using the  water 
fill analogy [14], Le., 

.. . __ 
I 

~ I 0 otherwise 

where 

and the sum is over  the m terms  where [ 1 S p X  / I  In 

Fig. 8 shows  the  average efficiency index  per  channel 
versus p for  a  outage probability at a bit error 

‘rate with N = 1, 2, 4, 8 and M = 1, 2, 4, 8,  16. With 
fixed M ,  the p required for fixed Z , / N  increases by less 
than 3 dB as N is doubled. Thus,  the averaging effect de- 
scribed in Section 111-B dominates  for N s M .  Note that 
because of the  averaging effect, for M = 2, the Z , / N  even 
increases as N increases from 1 to 2. For N < M / 2 ,  the 
average efficiency index  per  channel is similar to that with 
optimum  linear  processing at the receiver only.  However, 
for N > M/2, the Z, /N  is much higher. 

Finally, considering implementation of the optimum 
transmittedreceiver  processor  pair,  we note that to deter- 
mine  the jointly optimum P and W, C must be known. 
However, with these matrices, the efficiency index is the 
same in both transmission directions. 

(P,/2) I I-’ < J .  
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D. Capacity 
Finally,  we  consider  the distribution of the total nor- 

malized capacity (Shannon limit) for the channels be- 
tween the  two  users,  The capacity can  be determined by 
analyzing the independent channels  in C [4], as in Section 
11-D. Thus, the total normalized capacity is given by 

N 

I, = c log, (1  + p X , P , )  (31) 
i =  1 

where X i  is  the ith eigenvalue  of CtC and Zy= Pi = 1. 
This is the  same  formula  as (28)  with p replaced by 
1.5p/IIn ( P , / 2 )  I .  Thus,  Fig. 8 also  shows  the  average 
normalized capacity power  channel  at p’ = 1.5p / I  In 
(P, / 2 )  I .  That is, the normalized capacity at p is the  same 
as the  maximum data rate for a error rate without 
coding  at p + 8.2 dB. 

IV. SUMMARY AND CONCLUSIONS 
In this paper, we  studied, for given  outage probability, 

the maximum data  rate (at a given error rate) and  the  ca- 
pacity  of multiple antenna systems  in a Rayleigh fading 
environment. In such  an  environment,  up  to M indepen- 
dent  channels  can  be  established between M transmit and 
M receive  antennas.  Results show that for a base station 
with M antennas,  up  to M / 2  remotes (each with one  an- 
tenna) can  access the base station that uses optimum  lin- 
ear processing, with about the same  maximum data rate 
as a single  remote.  However, the maximum data rate  per 
remote  is much lower with M remotes.  With  optimum 
nonlinear processing at  the base  station,  up  to M remotes 
can  access the base station with about  the  same maximum 
data rate  as a single  remote. 

Results for two users, each with M antennas, show that 
with optimum  linear processing at  one  receiver,  up  to 
M / 2  independent channels can be established between the 
users, with each  channel  having about the  same maximum 
data rate as a single  channel. With the  optimum transmit- 
tedreceiver processor  pair, up  to M channels can be es- 
tablished between the’users, with each  channel having 
about the same maximum data rate  as a single  channel. 
The capacity (the  maximum  data  rate with an essentially 
zero  error rate) at a given  average received signal-to-noise 
ratio p was shown  to be the  same  as  the  maximum data 

rate without coding at 1.5p /I In ( P J 2 )  I ( p + 8 dB  for 

In summary, we have described and studied the fun- 
damental limits on systems that exploit multipath to allow 
multiple simultaneous users (or channels) in  the same 
bandwidth. Results show the potential for large capacity 
in systems with limited bandwidth. 
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