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Abstract—In this paper, we derive the exact symbol error probability
for coherent detection of MPSK signals with optimum combining in the
presence of multiple uncorrelated equal power co-channel interferers and
thermal noise in a Rayleigh fading environment. The expression is general
and valid for arbitrary numbers of receiving antennas or co-channel in-
terferers. The complexity of the analytical model depends on the smaller
of the number of antennas and the number of interferers.

I. INTRODUCTION

Adaptive arrays can significantly improve the performance
of wireless communication systems by weighting and combin-
ing the received signals to reduce fading effects and suppress
interference. In particular, with optimum combining the re-
ceived signals are weighted and combined to maximize the out-
put signal-to-interference-plus-noise power ratio (SINR). This
technique provides substantial improvement in performance
over maximal ratio combining (where the received signals are
combined to maximize the desired signal power only) when in-
terference is present. However, determining the performance
of optimum combining is more difficult than determining that
of maximal ratio combining.

In this regard, closed-form expressions for the symbol error
probability (SEP), have been derived for the single interferer
case under the assumption of Rayleigh fading of the desired
signal in [1] and with Rayleigh fading of the desired signal and
interferer in [2].

With multiple interferers of arbitrary power, Monte Carlo
simulation has been used to determine the SEP [1]. To avoid
Monte Carlo simulation in case of equipower interferers, ap-
proximations have been presented in [3, 4]. However, the ap-
proximation of [3] still requires Monte Carlo simulation to
derive mean eigenvalues (a table is provided in [3] for some
cases), and the approximation of [4] has been proposed when
the number of interferers is less then the number of antenna
elements. The SEP expression is derived in [5], but the results
are limited to the case of binary phase-shift keying (PSK) mod-
ulation, equal-power interferers and no thermal noise. In [6],
upper bounds on the bit error probability of optimum combin-
ing were derived given the average power of the interferers.
However, these bounds are generally not tight, typically 2 dB
away from simulation results.

In this paper, starting from the eigenvalues distribution of
Wishart complex matrices, we first give the exact expression of
the SEP for coherent detection of � -ary PSK using optimum
combining in the presence of multiple interferers as well as
thermal noise in a flat Rayleigh fading environment.
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In Section II we provide the system description. A statistical
analysis of the eigenvalues of the covariance matrix is given
in Section III and the exact SEP is derived in Section IV. In
Section V we show some numerical results and in Section VI
we present some conclusions.

II. SYSTEM DESCRIPTION

We consider coherent demodulation and optimum combin-
ing of multiple received signals in flat fading environment. The
fading rate is assumed to be much slower than the symbol rate.
Throughout the paper �	��
	� is the transposition operator, and�	��
 � stands for conjugation and transposition. The received sig-
nal at  A-element array output consists of desired signal,  I

interfering signals, and thermal noise. After matched filtering
and sampling at the symbol rate, the array output vector at time�

can be written as:� � � 
���� � D � D ��� � � 
�� � IN � � 
�� (1)

with �
IN � � 
�� �

I��! #" � � I $ � � I $ � � � � � 
��&%'� � 
�� (2)

where � D and � I $ � are the mean (over fading) power of
the desired signal and ( th interferer, respectively; � D �) � D $ " �+*,*-*,� � D $ � A . � and � I $ � � ) � I $ � $ " �/*-*,*,� � I $ � $ � A . � are the desired
and ( th interference propagation vectors, respectively; � � � � 

and � � � � 
 (both with unit variance) are the desired and inter-
fering data samples, respectively; and %0� � 
 represents the ad-
ditive noise. The symbols � � � � 
 are taken with equal prob-
abilities. We model � D and � I $ � as multivariate complex-
valued Gaussian vectors having 132 � D 4 �5162 � I $ � 4 �87 and1:9 � D � �D ; �<1=9 � I $ � � �I $ � ; �?> , where > is the identity ma-

trix. The additive noise is modeled as a white Gaussian random
vector with independent and identically distributed (i.i.d.) ele-
ments with 162@%0� � 
 4 �A7 and 1=BC%0� � 
D% � � � 
+EF�HGJIK> , whereGJI is the thermal noise power per antenna element.

The SINR at the output of the  A-element array with opti-
mum combining can be expressed [1] asL �M� D � �D NPO " � D � (3)

where the short-term covariance matrix N , conditioned to all
interference propagation vectors, isN �Q1SR $ TVUXW,Y[Z B � IN � � 
\� � IN � � 
 � E (4)
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and 1�]02^� 4 denotes expectation with respect to _ . The inter-
ference samples � � � � 
 (with (`��aX�+*/*+*J�b I) are assumed to be
Gaussian distributed [7]. Therefore,N � �

I��! c" � I $ � � I $ � � �I $ � �dG I >e* (5)

It is important to remark that N , and consequently also the
SINR L , varies at the fading rate.

The matrix N O " can be written as fhg O " f � where f is
a unitary matrix and g is a diagonal matrix whose elements
on the principal diagonal are the eigenvalues of N , denoted
by �ji " �+*/*+*J�bi � A 
 . The vector kl�mf � � D � ) n " �+*,*-*,� n � A . �
has the same distribution as � D, since f represents a unitary
transformation. The SINR given in (3) can be rewritten as:L �M� D � �D fhg O " f � � D �o� D

�
A� p  c"3q n p q Ii p * (6)

Since N is a random matrix, its eigenvalues are random vari-
ables too.

We now investigate the statistical properties of �ji " �+*/*+*S��i � A 
 .
We will show later that this is related to problems arising in
multivariate statistic, regarding the eigenvalues distribution of
complex Wishart matrices. Let

CI rtsu q q q� I $ " � I $ I */*+* � I $ � Iq q q
vw

(7)

be a �x A y  I 
 random matrix composed of  I interference
propagation vectors as columns. For equal power interferers,
i.e., � I $ � �<� I for (z�{a^�+*/*+*J�! I, the expression (5) can be
rewritten as N �M� I |N �dG I >\� (8)

where |N � CIC
�
I is a �x A y  A 
 random matrix. The eigenval-

ues of N can be written in terms of eigenvalues of |N , denoted
by ��}i " �e} i I �/*+*/*J�~}i � A 
 , asi p ��� I }i p �&G I � ��a^�+*/*+*J�! A � (9)

and therefore the knowledge of the joint p.d.f. of�ji " �bi I �+*+*/*J�bi � A 
 can be derived by that of � }i " � }i I �+*/*+*S� }i � A 
 .
III. DERIVATION OF THE JOINT DISTRIBUTION OF THE

EIGENVALUES OF N
Let us consider the matrix |N , the joint probability density

function (p.d.f.) of the  A eigenvalues of |N is given by the
following theorem.

Theorem 1: The joint p.d.f. of the first  min rM�`�-� 2K A �b I 4
ordered eigenvalues |� � ) }i " � }i I �+*/*+*S� }i � min . � of |N , with}i "�� }i I � *+*/* � }i � min , is���� � }i " � }i I �+*/*+*J� }i � min 
���� � min�p  c"c� O#��K� }i � max O � min

p �

� � min O "�p  c" �� �
min��! p,� " � }i pS� }i � 
 I+� � � (10)

where  max r5���e� 2K A �! I 4 and � is the normalizing con-
stant given by ��� � � min W � min O " Z}� � min �V max 
 }� � min �x min 
 � (11)

with }� � min �x max 
'� � � min W � min O " Zx� I � min�p  c" �V max

� � 
[ /* (12)

The additional  A

�  min eigenvalues of |N are identically
equal to zero.
Let us consider both the cases  A ¡  I and  A ¢  I, sepa-
rately.

Proof: of Theorem 1 [Case I. ¤£ ¡ ¤¥ ]: When A ¡  I, |N can be related directly to the Wishart matrix [8,9],
since the entries of the random matrix CI form an i.i.d. Gaus-
sian collection with zero-mean, independent real and imaginary
parts, each with variance 1/2. So, we can write|N � �

I��! c" � I $ � � �I $ � � CIC
�
I � |¦ �x A �b I 
�� (13)

where |¦ �x A �! I 
 is a �x A y  A 
 complex Wishart matrix.
Thus, the joint p.d.f. of the eigenvalues of |N can be easily de-
rived by [8, eq. (3.12) p. 37] and it is given by (10), (11) and
(12). Note that the difference between (3.12) of [8] and (10),
(11) depends on the fact that the Wishart Matrix considered in
[8] is given by a collection of i.i.d Gaussian r.v.’s with indepen-
dent real and imaginary parts having variance 1, whereas in our
paper we assume a variance of 0.5.

Proof: of Theorem 1 [Case II. §£ ¢ §¥ ]: Let us consider
the following theorem.

Theorem 2: Suppose that ¨t©Q�«ª $ ¬ and m©®� ¬¯$ ª with° ¡²± , the � ± y ± 
 matrix 6¨ has the same ° eigenvalues as
the � ° y ° 
 matrix ¨: , counting multiplicity, together with
an additional ± � ° eigenvalues identically equal to zero.

Proof: of Theorem 2 (See [10, p. 53]).
When  A ¢  I, |N can still be related to the Wishart matrix,

by means of Theorem 2. In fact, by introducing the �x I y  A 

matrix ¨ r C

�
I and the �V A y  I 
 matrix  r CI, then the�x A y  A 
 matrix 6¨�� CIC

�
I � |N has the same  I eigen-

values as the �V I y  I 
 matrix ¨=³� C
�
I CI, and the addi-

tional  A

�  I eigenvalues are equal to zero. Moreover, since A ¢  I, C
�
I CI � |¦ �x I �b A 
 is a �V I y  I 
 complex Wishart

matrix and therefore |N has total of  A eigenvalues, where  I

eigenvalues have the joint p.d.f. given by (10) with  min �´ I

and  max �l A, and additional  A

�  I eigenvalues identi-
cally equal to zero.

Using the distribution theory for transformations of ran-
dom vectors together with (9), the joint p.d.f. of

� �) i " �+*+*/*J�bi � min . � with i "µ� */*+* � i � min is� � �ji " �+*/*+*J��i � min 
'� a� � min
I

�
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� � ��&¶ i " � GJI� I
� i I � GJI� I

�/*+*/*S� i � min

� GJI� I · � (14)

where
���� �	��
 is given by Theorem 1. The additional  A

�  min

eigenvalues of N are identically equal to GJI .
IV. DERIVATION OF THE SYMBOL ERROR PROBABILITY

The SEP for optimum combining in the presence of multi-
ple co-channel interferers and thermal noise in a fading envi-
ronment is obtained by averaging the conditional SEP over the
(desired and interfering signal) channel ensemble as�\¸¹� 1Jº B@»�¼cB �¾½½ L ECE� ¿®À� »�¼ B �¾½½ L �oÁ\E � º��ÂÁC
DÃXÁ§� (15)

where »�¼ B � ½½ L E is the SEP conditioned on the random vari-
able L , and

� º �D� 
 is the p.d.f. of the combiner output SINR. Al-
though, the evaluation of (15) involves a single integration for
averaging over the channel ensemble, it requires the knowledge
of the p.d.f. of L , which can be quite difficult to obtain. This is
alleviated by using the chain rule of conditional expectation as

� ¸ �o1 � ÄÅÅÅÅÅÆ ÅÅÅÅÅÇ 1�ÈÊÉ »�¼ É � ½½ L ��� D

�
A� p  #" q n p q Ii pÌË§ËÍ Î[Ï ÐÑ^ÒDÓ Ô

Õ ÅÅÅÅÅÖÅÅÅÅÅ× � (16)

where we first perform 1 È 2@� 4 and average over the channel en-
semble of the desired signal to obtain the conditional SEP, con-
ditioned on the random vector

�
, denoted by � ¸[Ø � . We then

perform 1 � 2X� 4 to average out the channel ensemble of the in-
terfering signals.

The ( th interfering data samples, � � � � 
Ù(Ú�ÛaX�+*/*+*J�b I, can
be modeled as a zero-mean, unitary variance Gaussian random
variable. Note that the Gaussian assumption gives a good ap-
proximation when the interfering contribution is due to a large
number of interferers sampled at random time but in any case
it represents a worst case: here it will be used regardless of the
number of interferers [7]. With this assumption together with
the Gaussianity of %0� � 
 , »�¼cB � ½½ L E for coherent detection of� -ary PSK is given by [11]»�¼cB � ½½ L E � a� ¿&Ü�ÞÝ �àß ¶ �¾á MPSKâ �,� IJã L · Ã ã � (17)

where
á

MPSK � â �-� I � �cä ��
 and å<� � �V� � aK
 ä � . Using
(17), � ¸[Ø � can be written as� ¸[Ø � � a� ¿dÜ� 1SÈ�É Ý �àßçæ �¾á MPSKâ �-� IJã � D

�
A� p  c"3q n p q Ii péè Ë Ã ã� a� ¿ Ü�Þê ºàØ � ¶ �¾á MPSKâ �,� ISã · Ã ã � (18)

where ê ºàØ � �	��
 is the characteristic function (c.f.) of L , condi-
tioned on

�
, given byê ºàØ � �,(ìëí
�� aî �

A

p  c" �!a � (ìëà� D ä i p 
 � (19)

and we have used the fact that k is Gaussian with i.i.d. elements
in deriving (19). Therefore, the conditional SEP, conditioned
on
�

, in the general case of  A antennas and  I interferers
becomes:� ¸[Ø � � a� ¿ Ü�ðï � ã 
 � min�p  c":ñ â �-� ISãâ �,� I ã � á MPSK

Ñ
D� ��ò Ã ã � (20)

where

ï � ã 
�� ñ â �-� ISãâ �,� IJã � á MPSK

Ñ
Dóeô ò � A O � min * (21)

Using (16) and (20), the unconditional SEP for optimum
combining becomes�#¸õ�o1 � B � ¸[Ø � E �´¿®À� *+*/*b¿zÀ�Kö ¿®À� ô � ¸÷Ø � �� � � � � 
íÃ@i " Ãìi I *+*/*!Ãìi � min * (22)

Expression (22) is exact and valid for arbitrary numbers of an-
tennas and interferers; however, it requires the evaluation of
nested  min-fold integrals, which can be cumbersome to evalu-
ate for large  min. To give an idea of the amount of time needed
for  min=2 (which allows to investigate either dual combining
with any number of interferers or an arbitrary number of an-
tennas and two interferers), the computation of (22) on a 450
MHz Personal Computer requires about 100 seconds. Consid-
ering that this is an exact result, the amount of time is quite
acceptable.

V. NUMERICAL RESULTS

In this section, we investigate the effect of signal to noise
ratio (SNR) defined as � D ä GJI , the ratio between the desired
received signal power and the total interfering power (SIR) de-
fined as � D ä �x I �ø� I 
 , the number of interferers, and the number
of antenna branches on the SEP.

Fig. 1 shows the SEP as a function of SNR for dual optimum
combining (  A=2) with �ù�ûú ,  I �üú and 4, and SIR = 0
dB. The results show excellent agreement between exact anal-
ysis and simulation results. The curves also exhibit an error
floor when the number of interferers  I is greater than the ar-
ray degrees of freedom, i.e.  A

� a , as expected. Fig. 2 shows
the SEP as a function of SNR for different values of SIR rang-
ing from -10 to 10 dB; � =4,  A=4,  I=2. Note that, since A ¢  I, the antenna array is able to null out the interfer-
ers, and therefore there is no error floor in the performance. In
Figs. 3 and 4 we have the SEP versus the SIR;  A=2, � =4,
SNR=5, 10 and 20 dB and several values of  I are considered.
Note that, when the interfering power is comparable with the
thermal noise power, the number of interferers plays a marginal
role (see Fig. 3 for ýÿþ�� ¢ 10 dB and Fig. 4 for ý�þ�� ¢ 5 dB
and 20 dB). Finally, the asymptotic SEP is limited by the ther-
mal noise.

Fig. 5 shows the SEP as a function of the number of receiv-
ing antennas with SIR as a parameter ranging from -10 to 10
dB; � =4,  I=2 and SNR=10 dB. The figure shows that the
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Fig. 1. The SEP as a function of SNR for � I=2 and 4; 	 =2, SIR=0 dB. A
comparison between analytical model and simulations
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M=4, NA=4, NI=2
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SIR=5 dB
SIR=10 dB

Fig. 2. The SEP as a function of SNR for different values of SIR; 	 =4, � A=4,
� I=2.

system is able to exploit the spatial diversity provided by the
increasing number of antennas (the SEP in logarithmic scale is
approximately linear in  A). Finally, in Fig. 6 we show the
SEP versus the number of interferers  I, for different values
of SNR; dual optimum combining with SIR=5 dB and � =4 is
considered. The figure confirms the results of Fig. 3; in fact,
when the array is overloaded, the performance does not depend
significantly on the number of interferers; this behavior is ac-
centuated for small values of SNR.

VI. CONCLUSIONS

In this work, we have derived the exact symbol error proba-
bility for coherent detection of MPSK using optimum combin-
ing in the presence of multiple uncorrelated equal power inter-

−6 −4 −2 0
 2� 4� 6 8� 10 12 14 16 18 20
SIR [dB]

10
−2

10
−1

10
0

S
E

P�

M=4, NA=2, SNR=10 dB�

NI=2
NI=3
NI=4
NI=6

NI=2

NI=3,4,6

Fig. 3. The SEP as a function of SIR for � I equal to 2, 3, 4 and 6; 	 =4,
� A=2, SNR=10 dB.

0� 2� 4� 6� 8� 10 12 14 16 18 20 22 24 26 28 30
SIR[dB]�

10
−4

10
−3

10
−2

10
−1

10
0

S
E

P
M=4, NA=2

NI=2
NI=4
NI=6

SNR=5 dB

SNR=20 dB

NI=2,4,6

NI=2

NI=4,6

NI=2,4,6

Fig. 4. The SEP as a function of SIR for � I equal to 2, 4 and 6; 	 =4, � A=2,
SNR=5 and 20 dB.

ferers and thermal noise in a flat Rayleigh fading environment.
Owing to the need to solve nested integrals, when the number
of antennas and interferers become large, the analytical model
tends to become cumbersome. On the other hand, in the case
of dual combining or when the number of interferers is equal
to two, the algorithm allows a fast evaluation of the SEP.
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