On the Capacity of Cellular Systems with MIMO

Rick S. Blum, Jack H. Winters and Nelson R. Sollenberger
Wireless Systems Research Department, AT&T Labs - Research
Middletown, NJ 07748-4801

Abstract—It is shown that the capacity of a single, isolated, multi-
ple transmit and receive antenna array link, with given interference,
is maximized by tr itting independent data streams from each
antenna for a quasistatic and flat Rayleigh fading channel with in-
dependent fading coefficients for each path. However, if such links
mutually interfere, in some cases the overall system capacity can be
increased by transmitting fewer streams.

I. INTRODUCTION

Transmit and receive antenna arrays used to form
multiple-input multiple-output (MIMO) channels have
shown great potential in isolated, single link communi-
cations without cochannel interference [1]. For a qua-
sistatic and flat Rayleigh fading channel with independent
fading, maximum ergodic capacity (average of mutual in-
formation) is achieved [1] by sending an independent in-
formation stream from each transmit antenna which is the
maximum possible number of streams which can be sent.
Very recent investigations have shown that cochannel in-
terference can seriously degrade the overall capacity [2]
when MIMO channels are used in a cellular system. Here
we ask if it is always best to send the maximum possible
number of independent information streams in order to
achieve maximum capacity. In particular, we investigate
the idea of adaptive MIMO, where the number of inde-
pendent streams transmitted may be fewer than the max-
imum possible. Note, the number of streams is less than
or equal to the number of transmit antennas. For exam-
ple, we consider a single stream transmitted by mulitiple
antennas in some cases.

Consider a quasistatic and flat Rayleigh fading channel
with independent fading coefficients for each path. First
we consider the capacity of a single, isolated link with
cochannel interference. There are some cases of this type
where it seems that it might be possible to achieve higher
capacity by reducing the number of MIMO streams. For
example, consider a case with n; transmit antennas, n,
receive antennas and a single MIMO interferer with k
streams. If n, streams are transmitted, array processing
theory implies that the interference can be nulled and re-
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ception of the data streams enhanced if n; + k < n,. This
suggests that if n; + k = n, + 1 then it might be best to
reduce the number of streams transmitted by at least one.
We first show that this is not the case using an analyti-
cal proof. For simplicity, we focus on systems with two
transmit antennas. Our analytical proof shows the capac-
ity of a single, isolated link is not improved by reducing
the number of streams transmitted from two to one. For
generality, we actually demonstrate that it is always better
to send the maximum number of streams possible as op-
posed to one stream for cases with any n;. A numerical
example illustrates our point.

On the other hand, if one user in a cellular system uses
fewer MIMO streams, this will create fewer cochannel in-
terferers for other users. In fact we show that the capacity
of each user can be increased if the number of streams
transmitted by each user is decreased, for certain signal-
to-noise ratios (SNRs) and interference-to-noise ratios
(INRs). We demonstrate this by showing that the capac-
ity of a two stream user faced with a two stream interferer
can be lower than the capacity of a one stream user faced
with a one stream interferer at certain SNRs and INRs.

II. MODEL OF MIMO CHANNEL

First consider a single isolated link with a MIMO user
and additive white Gaussian noise only (no interference).
To simplify matters assume quasi-static flat Rayleigh fad-
ing. The vector of complex baseband samples from the
set of n, receive antennas after matched filtering is

y=...,yn,)  =Hx+n M

where X = (21,...,2p,)7 is the transmitted vector, H
is the channel matrix with independent entries that are
each zero-mean complex Gaussian fading coefficients and
n = (ng,...,n,,)7 is the additive zero-mean complex
Gaussian white noise with covariance matrix I,,, . In such
cases, it is known [1] that the optimum signaling is Gaus-
sian, even if the noise is not white.

Now consider a cellular system where cochannel inter-
ference is present from L other users. In this case the vec-
tor of complex baseband samples after matched filtering
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becomes
L

y=Hx+ZH,-xj+n ¢3)
ji=1

where H; and x; represent the channel matrix and the
transmitted signal of user j respectively. For simplicity,
we assume all of the interfering signals x;,j = 1,...,L
are unknown to the receiver and we model each of them
as being Gaussian distributed. Then if we condition
on H, H,,...,Hp, the interference-plus-noise from (2),
EJ[;I H;x; + n, is Gaussian distributed with the co-
variance matrix R = Z][.‘___l Hf Cov(x;)H; + Cov(n)
where Cou(x;) denotes the covariance matrix of x;. The
interference-plus-noise is whitened by multiplying y by
R~Y/2 after which the new version of (2) can be rep-
resented using (1) if we take H = R~1/2H as the H
which appears in (1), so the optimum signaling for x is
Gaussian. In fact, the Gaussian signaling assumption is
exactly the assumption made for the distribution of each
X;,j = 1,..., L which is reassuring.

IT1. ISOLATED CHANNELS

The similarity of (2) to (1) allows us to use exist-
ing results to calculate the capacity. First consider the
case where it is not possible to send the required channel
state information, H, back to the transmitter to choose
the capacity-optimizing signaling. Conditioned on H,
the capacity obtained using all streams possible n,, =
min(ng, n,), with no feedback, is [1]

C=) logs (14 - X) 3)

i=1

where A; < A2--- < Ap,, are the relevant eigenvalues
of HHH and p is the total signal power from the transmit
array. Since noise power is normalized, p is also the SNR
[1].

First, we want to demonstrate that, for a given inter-
ference environment, in terms of ergodic capacity it is
always best to send as many streams as possible. To il-
lustrate this point in a simple way, we consider sending
one stream as opposed to sending more streams. In par-
ticular, consider transmitting only one data stream from
the transmit antenna array and then using optimum linear
combining at the receiver. For the purpose of this demon-
stration, initially consider a case with feedback of channel
state information to the transmitter, which allows an opti-
mum transmit weight vector to be chosen. Let s denote a
complex constellation symbol representing elements from
the data stream to be transmitted and assume an optimum
unit-length transmit weight vector wy will be chosen so

that w¢s is transmitted. The optimum unit-length com-
bining weight vector w, is used at the receiver so the ca-
pacity obtained using the single stream is

C = MaZy, w, 10g, (1 + |W.FHw,s[?)
2

_ H
Hw, ~
= mazw, log, (1 + (Iﬁwtl) Hw,s| )
t

=log, (1 + p maz,,, [Hw[?)
=logy (1 + pAn,,.) @

In (4), the simplification to get to the second line is jus-
tified by the Cauchy-Schwartz inequality. The final sim-
plifications follow from a well-known theorem of linear
algebra.

In cases without feedback, it would not be possible
to pick the transmit vectors based on H. Instead, we
pick fixed vectors with equal magnitude complex com-
ponents. For example, in the case of one stream, we pick
wer = (1/\/Ne, .. .,1//n)T. Selecting the weight vec-
tors in this way leads to the same ergodic capacity as in
the expected value of (4) except that there is a “coher-
ence” loss that reduces the SNR by at least a factor of ny
so that

E{C}<E {log2 1+ nﬂtxnm)} L ®

The inequality in (5) follows from Jensen’s inequality. By
comparing the expected value of (3) with (5), it is easy to
see that the expected value of (3) will always be as large as
or larger than (5) since (5) is exactly equal to the expected
value of the last term in (3) and the other terms in (3) are
nonnegative. Thus it always makes sense to transmit the
maximum number of streams provided the interference is
fixed. These conclusions can also be verified numerically.
Here we focus on a case with n, = n; = 2. Numerical
results illustrating the superiority of using two streams are
provided in the solid curves in Figure 1 which show the
ratio of the two-stream capacity to the one-stream capac-
ity versus SNR for a common (0, 10, 20, or 30 dB) INR
due to a single stream interferer. Since the ratio is always
larger than unity, transmitting two streams is always bet-
ter for the same single stream interferer. From Figure 1, it
is clear that the increased capacity from transmitting two
streams gets smaller as INR increases as expected.

IV. MIMO STREAM CONTROL

A key issue that has not yet been addressed is that in-
terference from one user will hurt another. Thus in fact,
it may be better to have all users use fewer than the max-
imum number of possible streams in order to increase the
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Fig. 1. Solid curves are ergodic capacity E{C} for 2 transmitted
streams divided by the ergodic capacity for 1 stream transmitted with
the same 1 stream interference. The dashed curves are ergodic capacity
for 1 transmitted stream and 1 interference stream divided by the er-
godic capacity for 2 transmitted streams and 2 interference streams. All
assume flat fading with either 0, 10, 20, or 30 dB INR.

capacity of each user. This is illustrated by the dashed
curves in Figure 1 for the particular case of n; = n, = 2
where each user experiences interference from one other
user who uses the same number of streams as they do.
Here we find that if each user uses a single stream, the
capacity is often higher than if each user uses the max-
imum possible number of streams, which is two in this
case. Reducing the number of streams transmitted is sim-
ilar to power control. Thus other users see more favorable
interference environments when you control the number
of streams you employ. In particular, using fewer streams
may enable the other users to null extra interferers with
the extra degrees of freedom. One might wonder ex-
actly how important it is to select the correct number of
streams. Figure 2 shows the difference in capacity using
2 streams versus 1 stream desired and interference sig-
nals as a function of SNR and INR using a contour plot.
If SNR and INR can be estimated, such a plot could be
used to select if one or two streams should be used by
two users that are mutually interfering. The contour plot
shows clearly the loss in capacity that would result by not
making the selection correctly for a given SNR and INR.
In fact, one can imagine more complicated schemes sim-
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Fig. 2. Ergodic capacity ( 2 streams for desired and interference signals
) - ergodic capacity ( 1 stream for desired and interference signals )
versus SNRand INR. .

ilar to the power control algorithms typically used in cel-
lular systems that would control the number of streams
used by each user. One observation is that for SNR and
INR between 0 and 10 dB, which holds strong interest in
cellular systems, there is a modest difference between the
capacities of 1 and 2 stream systems.

V. OPTIMUM LINK CAPACITY WITH FEEDBACK

Now consider the case where it is possible to send the
required channel state information, H, back to the trans-
mitter to choose the capacity-optimizing signaling. Un-
der the constraint of fixed total transmit power, capacity
with feedback can be found using Lagrange multipliers
[3], [4], [5] and a well-known water filling solution re-
sults. The water filling will choose the number of streams
to transmit, which can be n; at most. We call this link-
optimum signaling. One can also consider a scheme con-
strained to use at most n; < 7n; as the maximum number
of streams that could be transmitted. The best approach
of this type can be shown to follow the water filling so-
lution but only transmitting the streams corresponding to
the n, largest eigenvalues. Of course, for the same in-
terference environment, the link-optimum approach must
be better than limiting the maximum number of streams
since the link-optimum approach yields best performance
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for this case by construction. Viewed another way, if the
extra streams are not helpful, the link-optimum approach
can simply shut them off by giving them no power.

Consider a case with n; = n, = 2 and compare the
link-optimum signaling approach just described to one
with n, = 1 which always sends one stream. The perfor-
mance of these schemes is compared in the solid curves
in Figure 3 for cases with fixed one stream interference.
In Figure 3, all curves are normalized by the capacity
achieved by the scheme which always transmits only one
stream and sees an interferer which also always transmits
only one stream. The solid curves in Figure 3 are al-
ways above unity, indicating that it is always better to use
the link-optimum scheme. Since the two schemes com-
pared see exactly the same interference environments, this
follows directly from the arguments producing the link-
optimum approach for this case. Notice that the optimum
approach does not provide significant improvement for
cases with weak signal strengths (SNRs below 0 dB) or
very strong interference (INRs greater than 10 dB for the
range of SNRs shown).

Now consider a system with two users which interfere
with one another (n; = n, = 2 again). The dotted curves
in Figure 3, which are defined similarly to those in Fig-
ure 1, illustrate that it is again sometimes useful to re-
duce the number of streams transmitted by each user to
provide increased capacity for each user. Except for the
curve for 0 dB INR for the case of SNR > 0 dB, all
the other dotted curves are below unity. Thus for suf-
ficiently weak signals or sufficiently large interference,
limiting to one stream improves performance over the
link-optimum scheme. The key is that we are compar-
ing one scheme which is always transmitting 1 stream and
always receiving 1 stream interference to another scheme
which is sometimes transmitting 2 streams and sometimes
receiving 2 stream interference. Note that the interference
environment is different in the two schemes we compare.

The complimentary cumulative distribution functions
(ccdfs) of the capacity are also of interest. Figure 4 il-
lustrates the improvements that result in the capacity ccdf
when receiving one stream desired and one stream inter-
ference as opposed to receiving two streams desired with
two stream interference.

We note that for cases without feedback, generally our
ccdf results (not shown) are similar to those in Figure 4.
It is worth noting that, for cases without feedback, rea-
sonably large improvements in the capacity ccdfs can be
achieved by incorporating delay diversity {6]. On the
other hand, the ergodic capacity curves, like those in Fig-
ure 1, show little difference regardless of whether delay

T T T T T T T T

-A- Link Opt. trans, No Int/t str trans, No Int
ol | -0~ Link Opt. trans, 1 sirint/1 sirfrans, 1 strInt, 0 dB INR J
—— Link Opt. trans, 1 strInt/1 str trans, 1 str Int, 10B INR
-%- Link Opt. trans, 1 strInt./1 strirans, 1 strint, 20 dB INR
—+ Link Opt. trans, 1 strInt/1 str trans, 1 sir Int, 30 dB INR
- Link Opt. trans, Link Opt. Int sir trans, { strint, 0 dB INR
-O- Link Opt. trans, Link Opt. Int str trans,1 strInt, 10 0B INR
-@- Link Opt, trans, Link Opt. Int str trans,  str Int, 20 dB INR 4

5F |:& Link Opt. trans, Link Opt. Int/1 sk trans, 1 str Int, 30 dB INR

E(CY(E(C) with 1 stream trans, 1 stream Int)

o
@

L A
g8 -
g 8egege 8 g A A-“‘A"'.
ApBA DA A A 'A""Q"'A“'{A"“ . . )
-25 -0 -5 -10 5 0 § 10 15 2 %
SNR, dB

Fig. 3. Solid curves are ergodic capacity E{C} for optimum transmis-
sion (2 streams or fewer) divided by the average capacity for 1 stream
with the same 1 stream interference. The dashed curves are the optimum
average capacity (2 transmitted streams or fewer) with an interferer of
the same type (2 interference streams or fewer) divided by the average
capacity for 1 transmitted stream and 1 interference stream. All assume
flat fading with either 0, 10, 20, or 30 dB INR.

diversity is used. For example, the ergodic capacities for
sending a single stream without delay diversity are barely
distinguishable from the same curves for the case where
delay diversity is employed.

VI. CASES WITH A LARGER NUMBER OF ANTENNAS

The general characteristics of the results for cases with
ng > 2, n, > 2 and for a different number of streams
transmitted are similar to what we have shown for n; =
n, = 2. This is true both for cases with and without feed-
back. There are some minor differences which are easy to
predict. For example, consider a case with ny = n, = 4
where feedback is available. Consider comparing the per-
formance of a case where a maximum of four streams
are transmitted to a case where one stream is transmit-
ted as illustrated in Figure 5. The major differences be-
tween Figure 3 and Figure 5 are for the solid curves with
larger IN Rs. These curves rise rapidly in Figure 5, while
they are flat and close to unity in Figure 3. The results
in Figure 3 are for a case where the maximum number
of streams sent is either two or one when there is a one
stream interferer. If a maximum of two streams can be
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Fig. 4. Capacity ccdfs for various SNRs with INR = 10dB com-
paring two streams desired with two stream interference to one stream
desired and one stream interference.

sent with a very strong one stream interferer, then only
one stream will be sent by a link-optimum approach. Thus
the ratio of the capacity with two and one streams is close
to unity. In the case of Figure 5, the maximum number of
streams that can be sent is either four or one. Thus, even
when there is one very strong one stream interferer, in the
case where a maximum of four streams can be transmit-
ted, there are still three interference-free streams. This is
the reason for the rapid increase in Figure 5. In fact, if
we consider a case with n; = n, = 4 and two streams
of interference and we compare a case where a maximum
of two streams can be transmitted to a case where four
streams can be transmitted, then the behavior for large
INR is very similar to that in Figure 3.

VII. CONCLUSIONS

We have analyzed MIMO capacity with interference.
We have introduced the interesting idea of stream control.
It is clear that the results given can be easily extended to
OFDM communication systems with nonflat fading [7],
and an arbitrary number of cochannel users. We note that
the results presented here hold only for infinite size con-
stellations and infinitely complex coding since they are
based on capacity. For a discussion of cases without cod-
ing, the interested reader is referred to [8].
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Fig. 5. Solid curves are ergodic capacity E{C} withny = n, = 4
for optimum transmission (4 streams or fewer) divided by the aver-
age capacity for 1 stream with the same 1 stream interference. The
dashed curves are the optimum average capacity (4 transmitted streams
or fewer) with an interferer of the same type (4 interference streams or
fewer) divided by the average capacity for 1 transmitted stream and 1
interference stream. All assume flat fading with either 0, 10, 20, or 30
dB INR.
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