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Abstract: It has been shown that link adaptation and
power control can improve performance of our future
wireless packet networks. Realizing the expected
performance gain of these techniques requires accurate
prediction of future interference power. In this paper,
we propose a new method based on Kalman filtering for
interference estimation. The new method is devised by
observing: a) it is possible to identify fairly accurately
the number of active co-channel interferers in the
cellular networks and b) interference power is positively
correlated with the number of active interferers. The
new technique uses a two-dimensional Kalman filter to
exploit that correlation to enhance prediction accuracy.

Using a cellular network with 1/3 frequency reuse
and partial traffic loading, the performance of the new
method is compared with a simplified method using a
one-dimensional Kalman filter where the number of
active interferers is not considered. Further, the new
method is compared with the traditional exponential
filtering. Since the proposed method and the simplified
method track interference and measurement errors
separately, their predictions represent closely the best
estimation by exponential filtering with the optimal
parameter. In addition, for a typical network
environment, the two-dimensional method yields the
lowest prediction errors for a wide range of parameters,
and provides a 0.5 dB improvement for the 90th
percentile estimation error over the simplified method
due to exploitation of the positive correlation between
interference and the number of active interferers.

1. Introduction

As Internet access has become so popular, our future
wireless networks will be based on packet switching
technology to support Internet protocols (IP). As an
example, let us consider the Enhanced Data rates for
GSM Evolution (EDGE) system [SAEE98, F99], one of
the standardized third-generation networks. The EDGE
system is designed to support integrated (packetized)
voice and data services. Using multiple modulation and
coding levels, the EDGE system employs a link-
adaptation technique to adapt packet transmission to one
of the modulation levels. The main idea of link
adaptation is to choose an appropriate modulation level
(and associated data rate) for a packet transmission,
according to the current link condition. When the radio
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condition is favorable, a complex modulation is used for
transmission to improve network throughput. On the
other hand, when the co-channel interference and/or the
signal-path gain between the transmitter and receiver are
poor, the packet transmission is adapted to a robust
modulation as a way to maintain network coverage. The
radio link condition can be reflected by the estimated
signal-to-interference-plus-noise ratio (SINR), which in
turn depends on the interference from neighboring cells,
the signal-path gain and the transmission power.
Results (e.g., [QC99], [LWO0O]) have shown that
significant performance gain can be achievable by
appropriate link adaptation algorithms.

Dynamic transmission power control [Z92, RZ98]
has been widely studied and practiced to manage
interference in cellular radio networks. To meet the
need of bursty traffic characteristics in the wireless
packet networks, [L99] proposes a power control to
track the (co-channel) interference power and signal-
path gain separately. According to the two estimated
values, transmission power is then adjusted to yield a
given SINR. Results (e.g., [CLQT00], [LDCQO01]) have
shown that power control can significantly improve
performance of the future wireless packet networks. In
order to obtain the expected performance gain by link
adaptation and power control, it is important to estimate
future interference power accurately and this is the topic
of this paper.

The organization of the rest of this paper is as
follows. In Section 2, we present the motivation for a
new method for estimating co-channel interference
power in the wireless packet networks. A new
estimation method using a two-dimensional Kalman
filter is discussed in Section 3. Section 4 presents
numerical results to show the merits of the proposed

method over the traditional exponential filtering
technique. Finally, Section 5 is our conclusion.
2. Motivation for New Estimation Method

Estimating  future interference power  with

measurement errors in wireless packet networks such as
the EDGE system is challenging. The difficulty has two
issues. First, interference power is equal to the
difference between the total received power and the
power of the desired signal, where the latter can be



measured by filtering based on the training symbols for
the signal. Making such measurements can be very
involved, especially when the measurement duration is
short, although we assume here that measuring
interference power is feasible. The second aspect of the
difficulty is that interference measurements typically
contain errors (e.g., due to thermal noise). In cellular
networks using circuits to support voice service, a
transmitter usually remains on for a relatively long
period of time. Consequently, interference has a very
strong temporal correlation, which enables use of a
low-pass filter to remove random measurement errors.
For this reason, exponential smoothing techniques are
commonly used for that type of environment. However,
such simple filtering is no longer adequate for the
wireless packet networks under consideration. This is so
because the latter networks are based on packet
switching and each transmitter uses an assigned channel
to transmit for a relatively short time before the channel
is re-assigned to another transmitter. As a result, the
temporal correlation of interference is weaker in the
packet-switching environment than in the Ccircuit-
switched networks.

To illustrate the impact of bursty transmission, let us
consider downlink transmissions in a TDMA cellular
network with 1/3 frequency reuse. Figure 1 shows the
representative  autocorrelation coefficient for the
interference power with fixed transmission power, no
thermal noise and typical radio parameters (see Section
4 for details). As shown in the figure, depending on the
average burst length L, the autocorrelation decreases
quickly as a function of the lag time in slots. Although
the burst length depends on the data rates and the traffic
characteristics of applications, L reaching as low as 10 is
common, especially in high-speed networks. Such
reduced autocorrelation reveals rapid changes in
interference power. As a result, both the interference
power and the measurement error now fluctuate from
one time slot to the next. That is, the low-pass filter not
only filters out measurement errors, but also smoothes
out quick changes in interference power, resulting in
erroneous estimation of future interference levels. The
main purpose of this work is to propose a method to
predict interference power in the presence of
measurement errors by tracking interference and noise
power separately by Kalman filtering in wireless packet
networks.

3. A New Estimation Method by Kalman Filtering

We begin with the operation assumptions for the
wireless networks under consideration.

1. Consider a radio channel (frequency) in a TMDA
cellular network where time is divided into slots.

. The medium-access control (MAC) protocol in
use allows at most one transmitter (either a base
station or a terminal) in each sector or cell to send
data onto a given channel at a time. That is, no
data contention occurs within the same sector or
cell. Multiple, contiguous time slots can be used
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by the same transmitter for sending a data burst.
The length of a data message (burst) is random
and characterized by a probability distribution.

2. A small number of training sequences are
assigned for transmission in various sectors or
cells, similar to reuse of radio frequencies. Let all
training sequences in the network be known to
each receiver (i.e., a base station or a terminal). In
addition, a receiver also knows the sequences
used for data transmission in its home sector/cell.
Interference power in each time slot can be
measured quickly, but probably with errors at
each receiver. The interference power is equal to
the difference between the total received power
and the power of the signal sent within the home
sector/cell, where the latter can be measured by
filtering based on the training sequences for the
signal.

3. Based on the knowledge of the training
sequences, each receiver can identify fairly
accurately the number of active co-channel
interferers that are transmitting in a given time
slot.

In devising this new method, we observe that
interference power is positively correlated with the
number of active co-channel interferers. As a result, we
propose a two-dimensional Kalman-filter approach to
exploit that correlation for enhancing the accuracy of
interference power prediction.

Specifically, for a given receiver, let x; = (iz,n;)”
denote the process state where i; and n; are the actual
interference power in mW and the number of active co-
channel interferers for time slot k, respectively. Let us
model the process as

i i i
Xp+1= [niilll =0x;, + w, = [(1) (1)] [n};} + [xg

where @ is an identity matrix and w, =(wh,wh)T.
Further, wj, and wj are white Gaussian sequences,
which represent the respective changes of interference
power and number of active interferers from one time
slot to the next. In essence, both iy and n; are modeled
as a Brownian-motion process [BH97] in (1). Let the
observation state at slot k be z,=(j;,m;)’ and the
observation of the process is
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v
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where v, =(v{,v})T and v{ and v} are white Gaussian
observation noise (error) for iy and n,, respectively. By
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the Kalman filter theory [BH97], the time and
measurement update equations for x; are:

Xpo1 = Xy 3)

Pra =P + Qy 4)



K, = l;k[f)k + Ry1™! ()
X = X + K [z, — x4] 6)
P, =[1 - K;IP; 0

where X, X, are the a priori and a posteriori estimates
of x;, P, P, are the a priori and a posteriori estimate-
error variances, K, is the Kalman gain, and Q; and R,
are the covariance matrices for the process noise w, and
v,, respectively. By definition, the covariance matrix
Q; forw,:

Pk

k COV(W;( 7WZ) (8)
cov(wi,wi)

Q= E[wkwl{] = l 2

Ok
where p? and o} are the respective variances for the
changes of interference power and the number of active
interferers in slot k, and cov(wyj ,w}) is the covariance of
wi, and w? in slot k. Similarly, the covariance matrix for
v, is given by

2
R =E[v,v{] = 9%
SRV Lo

cov(vi, v} )] ©)

where 07 and n} are the variance for the interference
measurement error and that for the error in estimating
the number of active interferers in slot &, respectively,
and cov(v},v}) is the covariance of v and v} in slot k.
As the number of active interferers in each time slot can
be determined fairly accurately, as stated in Assumption

3, R, becomes
2
R, = [‘Pk O] (10)

0 0

As our initial approach, elements of Q, in (8) are
estimated by a windowing scheme as follows. First,
using measurements in a sliding window of W slots, we
obtain the average changes of interference power and
the number of active interferers from one time slot to the
next by

k

- 1
Je=w X Ji—ii- (11)
w I=k-W+1
_ 1 X
me = W Y mp—my_y, (12)
I=k-W+1
respectively. Then, we approximate elements of Q0 as
1 k .. iy
pE= oy X lUimien-id? a3)
1 =k-wel
2 1 X = 12
Ok = w1 Y my—-my_y)-m]= (14)
T I=k-W+1
and
cov(wi,wi) = 1
O T w1
E Ui=Jic1=j)my—m_y ~my). (15)
[=k=W+1
Note that j,s in (11) include the interference

measurement errors {vi;}, which have a Gaussian
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distribution with zero mean. Despite this, if W is chosen
large enough (e.g., 21000), (11) gives an unbiased
estimate of average changes of interference power in
consecutive time slots. Thus, (13) and (15) provide good
approximations of p? and cov(wi,w}). As the number
of active interferers can be determined accurately by
Assumption 3, v{ is zero for all k in (2). As a result,
(124) is an appropriate estimate for the variance of w§,
Ok.

The variance of the interference measurement error
{q)%} in (10) depends on the noise level and the error
characteristics of the measurement circuit in use. In
practice, &7 can be determined by, for example,
measuring the "received" power on a known, idle
channel. Thus, the variance of the "received" power over
a time window can serve as an estimate of ¢%.

4. Performance Study

To study the performance of the proposed
interference estimation, we simulate a cellular network
with 37 cells, each of which has a radius of 1 Km. Every
cell is divided into 3 sectors, each of which is served by
a sectoral antenna with beamwidth of 60 degrees,
antenna gain at the front direction of 7.47 dBi and ratio
of front-to-back antenna gain of 25 dB. The radio link is
characterized by a path-gain model with an exponential
of 3.5 and the median path gain of -73 dB at 100 meters
from a base-station transmitter. The standard deviation
for shadow fading is 8 dB. Radio frequencies
(channels) have a reuse factor of 1/3; that is, all channels
are grouped into 3 sets and each of them is assigned to
one of the 3 sectors of every cell. Each radio channel is
divided into time slots and depending on the burst
length, a message (i.e., data burst) is transmitted in
consecutive time slots. The length of a data burst has a
geometric distribution and an average of L slots. We
consider that each channel carries 30% traffic load; that
is, after a data burst is sent, the channel in each co-
channel sector remains idle for a random number of time
slots with a geometric distribution. The transmission
(busy) and idle periods yield a channel utilization of
30% in a long run. Only downlink transmissions are
considered and transmission power is fixed at 30 dBm in
the simulation model.

Interference measurement errors { v} in (2) are due
to Gaussian noise where the noise power level is
determined based on the actual interference power and a
given interference-to-noise ratio (INR). Each cell is
populated with 100 terminals at random locations. The
time sequences of actual interference power, the number
of active interferers, and noise power are collected for a
small set of randomly selected terminals in the central
cell of the networks. These measurements are fed into
(11) to (15) to obtain necessary input parameters Q and
R. The Kalman filter in (3) to (7) is used to predict the
future process state Xy, =(ig41,541) for slot k+1
based on the measurements up to slot k. Since the actual
interference power for slot k+1, i, is known from
the simulation, a key measure to show the merit of the



proposed estimation technique is the absolute estimation
error, which is given by i, —iz.1| We consider the
average and the 90th percentile of the estimation error
below.

Note that the Kalman-filter method in Section 3
makes use of a two-dimensional filter. For comparison,
we also consider a simplified version of the method.
Specifically, the simplified version does not consider the
number of active interferers, resulting in a one-
dimensional filtering formulation, as used in [L99] for
power control. Furthermore, we also compare the two-
dimensional Kalman method with the traditional
exponential filtering with various parameter values. For
a given parameter p between O and 1, the predicted
interference power for slot k+1 by the exponential
filtering approach is

a1 = (1=p)iy + piy (16)

where j; is the measured interference power for slot k
and i, is assumed to be zero.

Figures 2 and 3. compare the average and 90th
percentile of the absolute estimation error (i.e., the
absolute difference between the actual interference
power and the predicted value) for the new method with
that for the traditional exponential filtering with various
parameters as a function of average burst length. The
INR is about 13.6 dB. As shown in both figures,
depending on the burst length and the exponential
parameter p, exponential filtering can perform
reasonably well or poorly in predicting interference.
The performance of the simplified Kalman-filter method
without use of the number of active interferers (denoted
as "Kalman") is also presented in Figures 2 and 3. Since
this simplified method tracks the interference and noise
separately, its interference prediction represents closely
the best estimation by exponential (filtering. The
proposed method (denoted by "2-dim Kalman" in the
figures) yields the lowest prediction errors for a wide
range of parameters, and provides a 0.5 dB gain for the
90th percentile error over the simplified method,
because the two-dimensional method exploits the
positive correlation between interference and the
number of active interferers. Since the burst length is
unknown in advance, the proposed technique is efficient
in estimating interference power for link adaptation and
power control in future wireless packet networks.

5. Conclusions

Link adaptation and power control have been shown
to be capable of providing significant performance gain
in our future wireless packet networks. To realize the
expected gain of these techniques, it is essential to
estimate future interference power accurately. In this
paper, we have proposed a new method based on
Kalman filtering for estimating future interference
power. The new method is devised by observing two
facts: a) it is possible to identify fairly accurately the
number of active co-channel interferers in the cellular
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network environment and b) interference power is
positively correlated with the number of active
interferers. The new technique uses a two-dimensional
Kalman filter to exploit that correlation to enhance
accuracy of interference prediction.

For a cellular network with 1/3 frequency reuse and
partial traffic loading, the performance of the new
method has been compared with a simplified method
using a one-dimensional Kalman filter where the
number of active interferers is not considered. Further,
the new method is compared with the traditional
exponential smoothing technique as a function of
message burst length. Our performance results reveal
that as intuitively expected, depending on the burst
length and the exponential parameter, exponential
smoothing can perform reasonably well or poorly in
predicting interference. Since the proposed Kalman-
filter method and the simplified method track
interference and measurement errors (due to noise)
separately, their predictions represent closely the best
estimation by exponential filtering with the optimal
parameter. In addition, with 30% traffic load and 13.6
dB INR, the two-dimensional method yields the lowest
prediction errors for a wide range of parameters, and
provides a 0.5 dB improvement for the 90th percentile
estimation error over the simplified method due to
exploitation of the positive correlation between
interference and the number of active interferers. Since
the burst length is typically unknown in advance, the
proposed method is efficient in estimating interference
for link adaptation, power control and possible other
performance enhancement techniques in future wireless
packet networks.
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Fig.1. Autocorrelation of Interference Power
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