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Abstract—1In this paper, we compare measured fading data
with the popular Rayleigh model. Our results show that this
model does not agree with the experimental data. As an al-
ternative, we approximate the experimental data using au-
toregressive moving average (ARMA) models. To validate
the models, we compare several characteristics of fading ob-
tained analytically, by simulation, and from measured data.

I. INTRODUCTION

ANY papers and books are devoted to modeling fad-

ing communication channels. Common feature of the
models is that they all have memory. The most popu-
lar model describes fading as a complex Gaussian process
(1], [2], [3]). In this paper, we investigate the validity of
this model on the basis of experimental data ([6]). The
measured data used in this study was obtained from field
tests conducted to characterize the mobile multiple-input
multiple-output (MIMO) radio channel. The MIMO test
system consisted of a 4-branch base station receiver with
rooftop antennas and 4 transmitters at the mobile with an-
tennas mounted on a laptop computer. The base station
rooftop and laptop antenna arrays used dual-polarized an-
tennas with slant +45° polarization. For this study we
used the measurements of the complex channel from one
of the transmit antennas at the mobile to one of the base
station antennas.

The field tests were conducted using a 30 kHz band-
width, with bit and frame synchronous orthogonal se-
quences transmitted from each of the 4 transmitters at the
mobile. Real-time baseband signal processing at the base
station performed timing recovery and symbol synchro-
nization, and calculated and recorded the complex channel
measurements every 300 usec. !

Extensive drive tests plus pedestrian and indoor tests
were conducted at 1900 MHz from a typical cellular base
station site located in a suburban environment. Data was
collected along several drive routes including routes in a
residential area and on a highway, with vehicle speeds of 30
and 65 mph, and downrange distances between 2 to 5 miles.
Pedestrian tests were also conducted by walking with the
terminal at several locations and placing it inside a house.
Further details on the test system and measurements are
presented in [6]. We have performed an additional filtering
of the data to remove high frequency noise.

We compare theoretical models with measured data for

1Tt was assumed that the data rate and delay spread in the environ-
ment was low enough so that the effect of delay spread was negligible.
Previous field trials [5) have shown this to be the case.
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two different cases: mobile moviwg in residential area (case
"R”) and highway (case "H”). In case R, vehicle moves
at 30 mph while in case H it moves at 65 mph. Our re-
sults show that that estimated autocorrelation function of
fading process, level crossing rate and mean fade duration
differ from that of the theoretical Rayleigh model. As an
alternative, we considered modeling of fading using autore-
gressive moving average (ARMA) models. These models
are popular in many applications and are used as a major
tool for systems identification. [4], [8] ARMA models allow
us to approximate second order statistics of a process with
high degree of accuracy. On the other hand, we can take
advantage of the rich theory of fitting ARMA to experi-
mental data. However, since ARMA models are linear and
represent a special case of Markov processes, it might re-
quire to use high-order models to approximate accurately
the experimental data. A more economical description can
be obtained using more general nonlinear state-space mod-
els which are equivalent to the hidden Markov models [12],
[11]. In this paper, we consider modeling of the fade in-
phase component. The quadrature component has a simi-
lar model.

Our paper is organized as follows. In section 2 we com-
pare the most popular model for the Rayleigh fading ([2])
with measured data. In section 3 we consider various mod-
els for the fading envelope. We conclude in section 4.

II. CLARKE’S MODEL

Let z(t) be a low-pass equivalent of the transmitted sig-
nal with the inphase component z;(t) = Re{z(t)} and
quadrature component zg(t) = Im{z(t)}. Consider a
frequency-nonselective fading channel with the additive
noise n{t). This channel can be modeled as ([7], p. 716)

y(t) = c(t)z(t) + n(t) 1)

where y(t) is the received signal and fading is modeled
by the complex random process c(t). Different models are
based on different assumptions about ¢(t) and n(t).

The most popular models assumes that c(t) and n(t)
are complex stationary zero-mean Gaussian processes with
independent and identically distributed real and imaginary
parts. The PDF of a sequence ¢ = (¢(t1),c(t2), ..., ¢(t))
has the form

f(ex) = (27) % |Dlezp(—0.5¢,Del) (2)
where (D] denotes determinant of D, ¢ denotes the con-
jugate transpose of ¢, and D~? is the process covariance
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Fig. 1. Inphase fading autocorrelation function for case R (residential
area).

matrix:

D! = [R(t; — ti)]k,k (3)

R(7) is the process autocorrelation function. The noise
multidimensional distribution has a similar form.

This model is called a Rayleigh fading, because its enve-
lope a(t) = |c(t)] is Rayleigh distributed:
4)

If fading mean is non-zero, the fading is called Rician
which accounts for the presence of a line-of-sight (LOS)
component.

Different models of fading channels are based on different
assumptions about the fading power spectral density S(f)

(or autocorrelation function R(7r)). The Clarke’s model
([1], [2]) assumes that

S(f)=u/m\/fb = f? R(r)=pJo2nfplr]) (5)

where Jp(-) is the Bessel function of the first kind and
fp is the maximal Doppler frequency. The other models
include rational functions ([9], (3], (10]), simple irrational
functions ({9], [3]), and Gaussian PDF ([9]).

To validate the model, we compared the normalized
autocorrelation function Jo(27 fp|7|) with that estimated
from measured data for cases the R and H, respectively.
Our results are depicted in Figures 1 and 2.

As we can see, the theoretical model does not fit well
to the experimental data. We have observed also a sig-
nificant correlation between the inphase and quadrature
components as is seen in Figures 3 and 4.

Pr{a(t) < a} = 1 — exp(—0.5a%/p)

I1I. ARMA MODEL

It is well known that Gaussian stochastic processes can
be modeled by filtering of white Gaussian noise w(t):

c(t) = /_OO h(r)w(t — 7)dr (6)
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Fig. 2. Inphase fading autocorrelation function for case H (highway).
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Fig. 3. Autocorrelation and crosscorrelation between inphase and
quadrature fades for case R.
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Fig. 4. Autocorrelation and crosscorrelation between inphase and

quadrature fades for case H.
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with the filter whose frequency response H(j f) is found
by the Wiener factorization of the power spectral density:

S(f)=HGHH*(Gf) (7

where ()* denotes complex conjugation. This means
that we can approximate fading using only moving aver-
age (MA) models (or FIR filter). The order of the MA
model can be high. ARMA model (IIR filter) can give a
more compact approximation.

The ARMA model is defined by the following equation

T
E 9i€k—i
=0

where ey, is a noise (a sequence of independent identically
distributed (i.i.d.) random variables). It is usually assumed
that go = 1 and the noise ey represent zero mean Gaussian
variables (discrete white Gaussian noise). To complete the
process description, the initial conditions must be provided.
We assume that these conditions correspond to the station-
ary state since we consider very long sequences.

It is clear from this description that the ARMA ap-
proximation of the fading is a special case of the Markov
process whose state is defined by the vectors cﬁ:;
(Ck_P,Ck_p+1, —eey Ck—l)’ eﬁ:: = (ek_,, Ek—g+1y ooy ek_l). In
the case of Gaussian noise, the ARMA is a Gauss-Markov
process.

The model can be represented symbolically as

14
ek =) hick—i+vk, vp= (8)

i=1

H(g)er = G(q)e: (9
where H(q) and G(q) are the operator polynomials:
P r
H(g)=> hg™", Gla)=) g (10)
=0 =0
g~* i5 the shift operator: g cy; = ¢s—;.
The sequence ¢, power spectrum is given by ([8])
S(f) = o®|G(e™ ) H(e*™ ) (11)

where o is the noise standard deviation. The process
autocorrelation function has a matrix-geometric form and
can be found analytically or by using the inverse Fourier
transform of S(f).

Most of the methods for fitting ARMA models to ex-
perimental data are based on minimizing some measure
between the predicted and measured signals. This usu-
ally leads to fitting second order statistics. For Gaussian
processes, this approach is optimal. Using the standard
statistical methods, we fiited ARMA models with r = 5
and p = 15 to the experimental dat. The time unit for
these models is 1/3094 sec. The models’ autocorrelation
functions and power spectral densities are compared with
that of measured data in Figures 5,6,7, and 8.

As we can see, the power spectrum for the case R does
not have a typical U-shape which is characteristic for the
Clarke’s model.

The PDFs of the residuals e; PDF are compared with
the theoretical Gaussian distributions in Figures 9 and 10.
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Fig. 11. LCR for the fade inphase component (case R).
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Fig. 12. LCR for the fade inphase component (case H).

IV. MODEL BASIC PARAMETERS

To see if the model agrees with experimental data, we
compare the model’s basic characteristics with that of mea-
sured data. Fade level-crossing rate (LCR) is an important
characteristic of fading process. It can be used for esti-
mating the Doppler frequency and, therefore, the vehicle
velocity. For the Gaussian process with zero mean, the
LCR for level z can be found from the following equation
9

N(z) = nyexp(—0.5¢) (12)

where £ = z/0,,

1

nz:§7—r

~9"(0)/4(0) (13)
and g(7) is the process autocorrelation function. Figures
11 and 12 compare the LCRs obtained using this equation
with the experimental and simulated data. Simulated data
was obtained using the ARMA models.
Duration of fades is another important parameter of the

fading process. The average fade duration below level R
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can be expressed as ([2], pg. 36)

7(R) = P(r <= R)/N(R) (14)

where P(r <= R) is the probability of fades below R.
For the Gaussian process with zero mean

3
P(r<=R) = \/% /_ _erp(-0sutdu (15)

The results using this equation are compared with the
experimental data in Figures 13 and 14.

V. CONCLUSION

In this paper, we demonstrate that fading in wireless
communications can be modeled reasonably well by the
ARMA models. This conclusion is based on comparison
of measured and modeled characteristics of the fading pro-
cess.
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