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Abstract — Using a series approach, expressions
for the average symbol error probability (SEP) of
coherent binary signals over a correlated Rayleigh
fading channel with dual predetection equal gain
combining (EGC) and selection diversity (SD) are
derived. For both EGC and SD cases, the SEP is
in terms of the correlation coefficient of the branch
amplitudes, which is easy to compute and depicts
clearly the effect of correlated fading on the error
performance.

I. INTRODUCTION

Previously published studies of the performance analysis
of diversity combining in Rayleigh fading with both inde-
pendent [1] [2] [3] and correlated diversity branches [4] [5]
have focused mainly on maximal ratio combining (MRC)
{3] [4] [5]. Equal gain combining (EGC) with coherent
binary keying was studied with two and three indepen-
dent branches in [6]. Analysis for selection diversity (SD)
with two correlated branches was presented in [7], where
the results were expressed in terms of finite integrals. In
this paper we use a series approach instead of an integra-
tion approach to derive computationally simple expres-
sions for the average symbol error probability (SEP) for
coherent detection of binary signals with dual-diversity
predetection EGC and SD. Both the cases of equal branch
signal-to-noise-ratios (SNR’s) and unequal branch SNR’s
are included in our framework.

II. PRELIMINARIES

Let a1 and a3 be two correlated random variables which
are marginally Rayleigh with second moments

E{a?}=9,~, i=1,2, (1a)
and correlation coefficient
2 2
coviai, o) 0<p<l. (1b)
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The joint probability density function (p.d.f.) of a1, a2
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The joint cumulative distribution function (c.d.f.) of
o, a2 can be expressed in terms of the infinite series (8]

Fa;,ag (7”1,7'2) =

o0
k=0
X I‘(k+1, —4—592{:_,, ) , T1,72 20,

where the incomplete gamma function I'(k + 1, z) has the
representation

S K i
I'k+1,z)= /0 uFe "du = k! [1 —e“ Z z—:l . (4)
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In the performance analysis with EGC, we will use the
joint characteristic function (c.f.) of a1, a2, which is given
by (9] (p. 409)

\I’ﬂl ,0e2 (jwlijZ) =E {ej(w1a1+wna2)}

- p) Z (k,)ZGk(le, , p)

X Gk(]w% 9210) ) (5)
where, fori =1, 2,
Gi(jwi; @i, p) = T(k+ 1)1 P2 (k+ L3 —ﬂzn—fl))
+ jwil (1 = p)AT (k+ ) (6)
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Note that I'(-) denotes the gamma function and ; F1(-;-; )
denotes the confluent hypergeometric function.
For SD, we will use the c.f. of

of of
“Ysp = INax
A

(7)

where c; and ¢, are positive scale factors. Now the c.d.f.
of ysp can be expressed as

F‘YSD(U) = Foy a9 (CI'U%yCTU%) ’ (8)
and, using (3) and (4), its p.d.f. is given by

Fo,, az(clv2 CZUE)
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= (1-p) [ble"bl(l_ﬂ)u + bze—bz(l—p)U]
_ ( _ p)e—(bl+ba)v
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where

%
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To obtain the c.f. of vsp, we use the result [10]

Rl k!
eJuue—auvkd,u = —Tf ,
0 (a - .7“) +

in (9). This gives

b = k=1,2. (10)

a>0, k£=0,1,2,...

o _ by b2
Fasp () = (1 ”){[bl(l-p)—jul * Bl = 5 = 5]

) k
ST () e
i
k=0 =0

mr—} S

III. EQuAL GAIN COMBINING

We consider a coherent dual-diversity reception system
with a correlated flat Rayleigh fading channel, in which
the receiver employs matched filter detection. With EGC,
the received signals of each diversity branch are co-phased,
combined, and coherently demodulated. The complex
baseband signal received over the kth diversity branch
in a symbol interval 0 < ¢t < Ty can be represented as

(12)

where s(t) is the information-bearing signal, ay and 6
are the fading magnitude and phase of the kth diver-
sity branch, and n(t) represents the additive noise. The
noises n,(t),n2(t) are assumed to be independent zero-
mean complex white Gaussian random processes with
two-sided power spectral densities 2Np; and 2Np2 respec-
tively. We also assume independence among the random
sequences {ax}, {0x} and {nk(t)}. The fading magnitudes
«y, ap are assumed to be correlated Rayleigh random vari-
ables satisfying (1) with joint p.d.f. fa,,q,(-,-) given by
(2).

We focus on the coherent detection of binary signals
in which, over a symbol interval, s(t) = s;(t) if symbol i
is transmitted, where i = 0,1. The complex waveforms
so(t) and s,(t) have support [0, T) and satisfy!

ri(t) = axe % s(t) + nx(t), k=1,2,

JT Isi(t)|2dt = 2B,,  i=0,1,

&e{foT' s,(t)sg(t)dt} —2%E,, -l1<e<1

1The notation R {-} stands for the real-part operator.

Note that € is the signal correlation coefficient (correlation
coefficient of so(t) and s;(t)). The decision rule of the
receiver is given by

1
{Z e+19k/ ri(t)[sT(t) —so(t)]dt} Z (14)
0
This can be simplified using (13) to yield [6]
1
a >
D; = +(a1 + az) + (W + W) <0
0
if symbol 1 1; transmitted, (15a)
Do 2 —(ay + az) + (W1 + W2)
O
if symbol 0 is transmitted,
where
Wi =zt R {0 [ m@lsi0 - st} . g

k=1,2

are independent zero-mean real Gaussian random vari-
ables with variances

Nok

E{Wf}:m,

k=1,2 (15¢)

By symmetry of W; + W, the average SEP is given by

Pe,EGc = PI‘(D] < 0) = Pl‘(Do > 0) . (16)
If Fp,(-) denotes the c.d.f. of the decision variable Dy
and ¥ p, (jw) denotes its c.f., then, invoking the inversion

theorem [11], we get from (16) 2

P gcc = Fp, (0) = % o / Md“’ (17)

The c.f. of D = (a1 + o) + (W + W) is given by

Tw, (jw)\llw, (jw)\l’oq +az (]w)
- Nz(N0?+Nog) L.
=e 2B, {1 \1’01702(]“17]“’)7

¥p, (jw)
(18)
where Wy, q,(jw, jw) can be obtained from (5). Noting
that

I(k+1) =k, ‘I‘(k+;)

2The notation S {-} stands for the imaginary-part operator.
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we get from (18) and (5) the relation Using the result [12] (7.621(4))

H¥p )} _ - (1= )F $ 2k it /mu”‘le‘s“lFl(a; ¢ —Ku)du
w =1 (k)24 0
k=0
) =T®)(S + K)~%F (c —a b —st) )
x [0 gu(es ul1 - o], 21 - 5] b,5,K >0
1
+ 95 gi(w; Q21 - o), 1 —p])] » (193} jn (23), we get
where hi(ao,a1,a2) = (—l)kk!z mﬂl -
2 m=0
gk(w; a1,a2) = 1Fy (k+3; & —o@ -
! (k41 3 _)z) 1) D (ko 1) satepn) D
X 14 g T .
! R x oFy (~k= % k-m+ % b i) (29)
where 2F1(-,-;-;-) denotes the Gaussian hypergeometric
Now {9] (p. 1074) function {13]. Equations (19), (22) and (24) yield
tFi(k+3; 3 -2) = %'(Y"ﬁ]_)’ (20a) /oo ¥y G} g,
w
X ;Esz-H (Voz) ,
where Hojy1(-) is the Hermite polynomial of order 2k + 1 (1 ")g Z_"";c_*:')%p_
and is given by ¢ (25)
k
(-nHm™ -2m 3
Haena(0) = G401 S g™ 00 x [ (MR, a1 - pl, Ml )
Equations (20) and (19b) yield the result + Qé hi (Z(NDU-IZM) Qa1 — p], 1 - p])] )
w?a 2
ax(w; a1, a2) = (=1)*kle™ T+ Fy (k+ 1; %; —w:z) Let the branch SNR’s be defined by
M E QE
k s 3
(_l)m K —2m SNRl = TNoit Naay ? SNRz = T No1i+Naay ? (268)
) Z;)m!(2k+1—2m)!al W (21) (Haaffoz) (Hoagploz)
- and let 1
— €
‘We next evaluate the integral 9=— (26b)
0 2, Using the fact that
hx(ao, a1,a2) £ / e 7" gi(w; a1, az)dw 1 (2k — 2m)!
—00 — il N 7
l 1m F(k m+2) (k —m)l4k=m
—_ (_l)kk! Z <_ ) ak—m
o’ m!(2k +1—2m)l ! and changing the summation index m to k—m in (24), we
o . combine }%25) &4 and (17) to obtain the final expression
% 2/ W2k—2m - (egten) for the SEP, w
0 Pepce = 2
1 u2a2) k
x 1FA{k+1 75 — dw. (22 2k\ p* .
11( 2 1 (22) _ Q- P)Z( )%‘_Z( )(1) 2m+1
k=0 m=0
Changing the variable of integration to u = w? in (22), m+}
. SNR
we obtain X ﬁ_’_;'m_—‘#smzmsm
SO Vi
= (~1)k — k—m k-1 1.1, SNRp
hk(ao,al,ag) = ( 1) k'mz__:omal X 2F ( k ;, m+ ;, ;w m+SNRl+SNR2)
00 m+d
k—mil)_1 _2(a1+eo) SNR 2
x /0 ul 3)-1g- 2ol + (‘T_Ig = +SNR1+SNR2)
1 uas
x 1R (k+1; 3 ——4—) du. (23) x 2Ry (—k——,m+‘, 3 ﬁﬁmﬂczv)

934



The expression (27) is in terms of a series of powers of
p, enabling easy computation of the SEP, and quantifying
the effect of p on the SEP.

In the case of independent branches (p = 0), only the
k = 0 term of the summation over k in (27) is non-zero.
Using the fact that [13] (pp. 556-561)

zn(l i 3ia) =t

2’ 2’ 2
(27) simplifies to
\/SNRI (s:vm+§) + \/SNR, (smz,+§)

Pegacly—o = 3
2(SNR1 +SNR;+%)

(28)

’

which is the same as equation (23) of [6].

IV. SELECTION DIVERSITY
In this case, the SEP, conditioned on the instantaneous
output SNR ~sp, for coherent binary keying can be ex-
pressed as

Pe,sn(')'sn) =Q (V (1- 5)’)’5[)) =Q (V 29’751)) , (293)

where Bi? ool
7sp=max{]:,+m, -I—V—m—} (29b)
The c.f. of vsp is given by (11) with
bk:Q—kEJ,V—(Olk——pS’ k=12 (30)
The average SEP is given by
Pesp = E[Pesn(7))
= [Pt @)

Using the technique of [14], the average SEP can be writ-
ten in terms of the c.f. of ysp as

x

P, 1/
e,sD ~~ ;/o ‘Ilvsn ( ¢) d¢7

where ¥ (-) is given by (11). We can therefore rewrite
(32) as

P = (1—/’)/ sin® ¢
P (1 - INeED) +sin’ ¢

" sin ¢
(1 —P) m‘lq:;,j +sin’ ¢
_ f’:pki ki) (5165 + b5+ 1b)
2\ i) s

k=0

. k+i+1
y (—S&) }J do.
5rtbs +sinZ¢

(32)

(33)

The definite integral

i k
a2 [ sinZ ¢ _
jk(a)_;/o (m dp, a>0, k=0,1,2,... (34)

can be evaluated to yield

o=+ Fo (1) ()

-1
-1 1
X%(m)( wa
Applying (34) in (33), we get
1 9 g
119 () * 4 (0]
2[ \bi(1-p) "\b(1-p)
(1=p) > oy (ki
- 2 ZP Z i
(bllv'f-lbz bk+lb )j . ( )
(b1 + bp)k+i+1 kit by + b
Let the branch SNR’s be defined in this case by

E,
SNR; = 91\1,01 ,

(35)

Pc,sn =

Q2 Es

SNR; = Nog

(37

On further simplification of (36) using (30) and (37), we
get the final expression for the SEP, which is

P =1la_ gSNRy  _ gSN Ry
e,SD = 2 9SNR1+1 9SNRy+1

_ Q-9 p)
o* ;
k=0 =0
(SNR{SNREY 4 SNR{SNRYT!)
(SNRy+SNRo)F+i+T

. (9SNRiSNRy(1—p)
x *7"+'+1( SNR,+SNR; »

(38)

where Jk1i+1(-) is given by (35). Like the EGC expres-
sion (27), (38) is also in terms of a series of powers of

For independent branches (p = 0), only the £ = 0 term
of the summation over k in (38) is non-zero, and we get

Pe s - 1 1 - gSNRl _ gSNRy
€,SD| =0 gSNR1+1 9SNR2+1
SNRySNR }
’

/_._:i_x__z__
+ SNRISNRz+SNR1 45N Ry

which is a known result [16].

(39)

V. NUMERICAL RESULTS

The SEP of BPSK, which corresponds to g = 1, is plotted
against the branch SNR SNR; for EGC in Fig. 1 and
for SD in Fig. 2, with different values of the correlation
coefficient p (p = 0,0.5,0.7,0.9). We have considered both
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the situations of equal branch SNR’s (SNR; = SNR»)
and unequal branch SNR’s (SNR; > SNRy).

In the case of EGC, the Gaussian hypergeometric func-
tions in (27) have been calculated using a truncated se-
ries formula with a relative error tolerance of 0.001. In
computing Pe gcc, the number of terms taken in the sum-
mation over k in (27) are: 15 for p = 0.5, 25 for p = 0.7,
and 50 for p = 0.9. The maximum relative error obtained
over all P, g computations is 2.39 %. In the case of SD,
the number of terms considered in the summation over k&
in (27) for computing Pesp are: 15 for p = 0.5 and 25
for p = 0.7,0.9, and the maximum relative error obtained
over all P, s, computations is 1.28 %.

The plots reveal that the SEP decreases with increase of
branch SNR for a given p, and for given branch SNR’s, the
SEP increases with increase of p. In addition, the plots
indicate that the performance with equal branch SNR’s
is better than that with unequal branch SNR'’s.
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