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Abstract—In this paper, we use a virtual branch technique
to derive higher order statistics of the output signal-to-noise
ratio (SNR) of hybrid selection/maximal-ratio combining
(H-S/MRC) in a multipath fading environment. In particu-
lar, the cumulants, central moments, skewness and kurtosis
are derived. We consider the case of independent Rayleigh
fading with equal receive SNR averaged over the fading on
each diversity branch.

I. INTRODUCTION

Hybrid selection/maximal-ratio combining (H-S/MRC)
(see, for example, (1}, [2]) is a diversity combining scheme
where L (with the largest SNR at each instant) out of NV di-
versity branches are selected and combined using maximal-
ratio combining (MRC). This technique provides improved
performance over L branch MRC when additional diversity
is available, without requiring additional electronics and/or
power consumption.

In a previous paper [2], we derived the mean and vari-
ance of the output SNR of H-S/MRC for any L and N
under the assumption of independent Rayleigh fading with
equal receive SNR averaged over the fading (on each diver-
sity branch). This was performed using a “virtual branch”
technique which simplified the derivations. The higher or-
der statistics (HOS) (higher than second order) are also
useful in signal processing algorithms for signal detection,
classification and estimation as highlighted in [3], [4]. The
use of HOS has seen increasing utility as manifested in [5).

In this paper, we extend the results of [2] to derive an-
alytical expressions for the HOS of the output SNR of
H-S/MRC. Specifically, we derive the cumulants, central
moments, skewness and kurtosis of the output SNR. The
proposed problem is made analytically tractable by trans-
forming the ordered physical branches, which are necessar-
ily dependent, into independent and identically distributed
(i.i.d.) virtual branches, thereby permitting the derivation
of the HOS expressions for arbitrary L and N.

In Section II, we present a system model of general diver-
sity combining and derive the characteristic function (c.f.)
of the output SNR using a virtual branch technique. The
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derivation of the HOS is given in Section III. Specifically,
we derive the cumulants from the c.f., the central moments,
and the skewness and kurtosis in Sections III-A, B, and C,
respectively. In Section IV, the HOS for several diversity
combining schemes including H-S/MRC, selection diversity
(SD), and MRC are obtained from the general theory de-
veloped in Section III. Conclusions are given in Section
V.

1I. DiveERsiTY COMBINING ANALYSIS VIA THE VIRTUAL
BRANCH TECHNIQUE

A. System Model

Let -y; denote the instantaneous SNR of the itk diversity
branch defined by ; £ a?Es /No;, where 2E; is the average
symbol energy, and o; is the instantaneous fading ampli-
tude and 2Ny; is the two-sided noise power spectral density
of the it branch. We model the ;s as i.i.d. Rayleigh ran-
dom variables (r.v.’s), and thus +;’s are i.i.d. continuous
r.v.’s with exponential p.d.f. and mean I' = E {v,}.

Let us first consider general diversity combining (GDC)
with the instantaneous output SNR of the form

N
YGDC = Zai’)’(i) ’

i=1

1)

where a; € {0,1}, 7(;) is the ordered =, i.e., ) > Y2 >

.. > ), and N is the number of available diversity
branches. It will be apparent later that several diver-
sity combining schemes, including H-S/MRC, turn out to
be special cases of (1). Note that the possibility of at
least two equal 7(;)’s is excluded, since y(y # v(;) almost
surely for continuous random variables.! Denoting -, M2

(), Y@+ - - +¥(wy)» the joint p.d.f. of vy, ¥y, - -+ » YN
is (2]

Frowy (O HE: ) 2

[ D m
] e E Ty sy > >y > 0
0, otherwise .

It is important to note that the vy(;)’s are no longer inde-
pendent, even though the underlying «;’s are independent.

!In our context, the notion of “almost surely” or “almost every-
where” can be stated mathematically as: if N = {7y = 7v(;y}, then
Pr{N} =0 [6], [7}.
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B. Characteristic Function for GDC

The characteristic function of the output SNR of GDC
in a multipath-fading environment is given by

11)'7GDC (]V) e ]E’chc{ etivrene }

o0 .
= /; e+]u7f"lcnc (’Y)d’)‘ y

where fyopo(-) is the p.d.f. of the output SNR. Alterna-
tively, the expectation in (3) can be obtained by substitut-
ing the expression for ygpc directly in terms of the physical
branch variables given in (1) into (3) as

N
Yrepc(Bv) = ]E{.’(i)}{e"?"zi:) a.-r(.)}

00 £, YN -~ .
_ / /‘ (1)/ (N=1) e+_7.,z;‘l"=1a.--y(,-) (1)
oJo (]

X Frmy ({‘7(5)},”:1) dyvy ---dvz)dray -

®3)

Since the statistics of the ordered-branches are no longer
independent, the evaluation of (4) involves nested N-fold
integrals, which are in general cumbersome and compli-
cated to compute. This can be alleviated by transforming
the instantaneous SNR of the ordered physical diversity
branches, vy, into a new set of wirtual branch instanta-
neous SNR’s, V;’s, using the following relation:

LT
Yay = E;Vn«

n=i

It can be verified that the instantaneous SNR’s of the

virtual branches are i.i.d. normalized exponential random

variables with characteristic function given by
1

1—jv°

(6)

Yy, (jv) 2E {7V} = )
The key advantage of the above transformation is that the
instantaneous SNR of the output can now be expressed in
terms of the instantaneous SNR of the virtual branches as

N
YGDC = Z ann ’ (7)
n=1
where the coefficients b,, are given by
F n
= ; Z a; . (8)
i=1

Using the independent virtual branches, the N-fold
nested integrals of (4) reduce to

Yrano(i¥) = Eqr{e 7 Zrmb} (9)
N
= [ ¥v.Gvbn).
n=1
Therefore
AN
1/’7(:00 (]V) = nl:[] m . (10)

The usefulness of the virtual branch technique is appar-
ent by observing that the expectation operation in (4) no
longer requires the N-fold nested integration.
II1. HiGHER ORDER STATISTICS OF GDC
A. Cumulants of GDC
The cumulants of GDC are given by

dk

7* aF (11)

Kk,GDC = In ¢7anc(j‘/)

v=0

Note that the cumulants, except for k;, are invariant with
respect to the translations of ygpc, hence they are also
known as “semi-invariants.” It can be shown that

d* , Y (Gba)k
mlnd}‘vcoc(]”):(k-l)!z (182)

2mbye 1B

and hence

N
rrGpe = (k—1)! D o).

n=1

(13)

Note that the mean and variance of the output SNR of
GDC can be obtained from (13) as

N
K1,GDC = Z br
n=1

i

(14)

T'epe

(15)

2 2
oépc = k2,cpc = ) B,

which are in agreement with previous results.

B. Central Moments of GDC

The central moments of GDC are given by

pkcoc = E {(’rch - M,GDc)k}
1 d* *)
k duvF ‘I,'YGDC (.7'/) = —\I’7GDC (0) s (16)
v=0

where ¥, (jv) is the central c.f. of ygpc defined by

Uoopc(iv) £ E am)

{e+jU(’chc—M,ch)}
YGDC )
and ¥$)_(jv) denotes the kit derivative of W.gyc(jv)
with respect to the variable v. Similar to the derivation
of (10), ¥, (jv) can be derived using the virtual branch
technique as

e —jvb,

Pyenc(iv) = H (1 ~ jubn) (18)

To obtain the derivatives of ¥ (jv), we first consider
the derivatives of

N
h(jv) = InWaenc(v) = Y [—jvba — In(1 — jvbn)] -

n=1
(19)
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It can be easily shown that

N
Z [_jb'n + (‘1'_.;:,.5,"5] ) q= 1
KOGy =" W
(0- D Y o By
e (20)

The k2 derivative of ¥, (jv) can be obtained using
Faa di Bruno’s formula for the derivatives of a composite
function (8] as

‘I'Sv’goc(j") = Uagpc(iv) (21)

k! ROy A (i)
x 3 111.--1k![ 1!J ] [ k!JV] :

[T Y]
0Lty .ol Sk
420+ kI =k

From (20), we obtain
0 g=1

@(0) = N
MOO=1 g, g=23.. &
n=1

Since h(M)(0) = 0, when evaluating \1/(7’2,,0(0) from (21),
it is to be noted that all terms in the summation having
l; > 1 will be zero. This implies that \I/QG)DC (0) = 0 and
we need to consider only terms with [; = 0 in evaluating
‘I’S,’Z,)DC(O) for k > 1. As a result, we obtain from (16), (21)
and (22), and the fact that ¥, (0) = 1, the expression

0 k=1
N Lo
1 .
Pk,GDC = Z H ,—Z—. l:;l- Z bﬁ’,] otherwise .
(2, 006)  9=2 n=1
0<la,... Ik <k
2yt +hlk=k

(23)

In the following, we list the first four central moments
explicitly. For k& = 1, (23) implies immediately that
pi1.cpc = 0. For k = 2, it can be shown from (23) that
215 + 313 = 2, which implies that (I2,{3) = (1,0), and hence

N
paGpe =Y bi. (24)
n=1
Note that u1,cpc and p2gpe are in agreement with the
results of [2]. Similarly, for k = 3, 2z + 3l3 = 3 implies
(l2,13) = (0,1), and hence

N
pacpc =2 b,

n=1

(25)

and that for k = 4, 2l + 3l3 + 4l4 = 4 implies (I2,13,14) =
(0,0,1),(2,0,0), and hence

N 2 N
14,GDC = 3 (Z bi) + 62 b'r41 .
n=1

n=1

(26)

C. Skewness and Kurtosis of GDC

The skewness of the output SNR of GDC can be ob-
tained from either the cumulants derived in Section III-A
or central moments derived in Section I1II-B as
K3,GDC _ H3,GDC

3/2
K2,GDC

N
25 83
n=1

= 2=t (27)

N 3/2
n=1

Similarly, the kurtosis of the output SNR. of GDC can be
obtained as

Biepe = 373
H2.GpC

K4,GDC H4,GDC
B2,cpCc = —3 +3=—
K2,GDC H2,GpC
N
68
=1
= —"= =43, (28)

by

IV. APPLICATION OF GENERAL THEORY

The results given in (13), (23), (27), and (28) are ex-
pressions for the cumulants, central moments, skewness
and kurtosis, of the output SNR for N-branch GDC in
Rayleigh-fading channels. The by,’s in (13), (23), (27), and
(28) depend on the choice of a;’s via (8). These HOS ex-
pressions obtained in Section III are general in the sense
that they apply to a variety of diversity combining systems
that fit into the form of (1), including H-S/MRC, SD, and
MRC.

A. H-S/MRC

In this section, the general theory derived in Section III is
used to evaluate the HOS of H-S/MRC. The instantaneous
output SNR of H-S/MRC is

YH.S/MRC = EL:'Y(i) ) (29)
i=1
where 1 < L < N. Note that yu.s/Mrc = YGDc With
R ®)
In this case,
bn = {g‘%, Zt}?efwise. (31)

Substituting (31) into (13), the cumulants of H-S/MRC

can be easily obtained as
N I\F
Kk,H-S/MRC = (k- 1)!Fk [L + Z (;) ] . (32)
n=L+1
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Similarly, the central moments of H-S/MRC can be ob-
tained by substituting (31) into (23) as

Mk, H-S/MRC (33)

0 k=1

3 N q
_Jr Z . H rg-[ {% [L+ Z (%)q]} otherwise .
0<ig. . g <k "

2054kl =k

The first central moment is equal to zero as required. The
second, third, and fourth central moments are obtained by
substituting (31) into (24), (25), and (26) as

0] o

n=L+1

OIS

n=L+1

2,n.s/MRC =2 [L +

p3n-s/Mrc = 2I° [L +

and

N IN\2 2
pays/mrc = 3T [L+ Z (;) ]
n=L+1
NNt
+ 6r* [L+ b (;) ] .
n=L+1

The skewness and kurtosis of H-S/MRC can be obtained
by substituting (31) into (27) and (28) respectively as

> @]

n=L+1

(36)

2[L+

B1,H-S/MRC = (37)

N 3/2°

2

[+ > ]
n=L+1

and

oo+ > ]

n=L+1

e+ 3 )

n=L+1

B2,1-5/MRC = s+3.  (38)

B. SD

SD is the simplest form of diversity combining whereby
the received signal from one of N diversity branches is se-
lected [9]. The output SNR of SD is

Ysp = max {7} = 1q)- (39)
Note that SD is a special case of H-S/MRC with L = 1.

Substituting L = 1 into (32) and (33), the cumulants and
central moments of SD can be easily obtained as

N
1
krsp = (k—1)!T* § = (40)
n=1

and
0 k=1
k N kg
H 1—3—, [% Z nlq] otherwise,
0<ly,... Ik <k

2p+--+klp=k
(41)

respectively. From (41) the second, third and fourth central
moments of SD are

N
1
2
pasp =17 ) oz (42)
n=1
Mo
pasp =2I% > 3 (43)
n=1
and
N 2 N
_ apd s 4 1
pa,sp = 30 [Z n2] 604 D~ (49
n=1 n=1
Similarly, the skewness and kurtosis of SD are
N
n=1
Br,sp = ~ 373 (45)
n?
n=1
and
N
Basp = —2= 43, (46)
1
n=1
respectively.
Note that for large N,
Yo
Yo S~ P>l (47)
n=1 w

where ((.) denotes the Weierstrass’s zeta function (see {10},
0.233, page 9). In particular,

"_6_2 ¢(4) = ™ 1os;. (48)

((2) = = 1.6449, ((3) =1.2021, %0

Therefore when N >> 1, we get the following asymptotic
results for the cumulants and central moments by applying
(47) in (40), (41), (42), (43), (44) respectively:

rsp ~ (k= DT ((K),

k>1, (49)
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and
0 k=1
k : O .
Hk,SD = r Z H i%' [_qq_] otherwise;
(2, lx)  a=2
0<ls,... L <k
21+ +klx=k
(50)
pasp ~ 1.6449 I'?, (51)
p3sp =~ 2.4042 I3, (52)
and
Hasp ~ 14.6114 T, (53)

Similarly, from (45) and (48), the asymptotic values of
the skewness and kurtosis of SD for large N are given by

Bi,sp = 1.1396 (54)
and
Ba,sp = 5.4 (55)
respectively.
C. MRC

In MRC, the received signals from all diversity branches
are weighted and combined to maximize the SNR at the
output [9]. The output SNR of MRC is

N N
MRC £ Z’Y:’ = Z'Y(i) .
i=1 i=1

Since MRC is a special case of H-S/MRC with L = N,
the cumulants and central moments of MRC are obtained
respectively by setting L = N in (32) and (33) as

(56)

Kk Mre = (k—1)! [Nl"k] , (57)
and
0 k=1
k
pimre = T Z H 5 [%] otherwise.
(2, lk)  g=
0<la,... 1 <k
2Ua+-+klg=k
(58)

The second, third and fourth central moments of MRC are

pzMre = NTZ, (59)
p3Mrc = 2NT3, (60)

and
paMRc = 3N(N +2)I*. (61)

The skewness and kurtosis of MRC become

2
= "——, 62
B1,MRC TN (62)
and
B -8 +3 (63)
2MRC = .
For large N, we have
Pi,Mrc = 0, (64)
and
B2 Mrc ~ 3. (65)

V. CONCLUSIONS

We derived exact expressions for the higher order statis-
tics, in particular, cumulants, central moments, skewness
and kurtosis, of the output SNR of GDC in Rayleigh-
fading. We analyzed this system using a “virtual branch”
technique which resulted in a simple derivation of the HOS
expressions for arbitrary L and N. The HOS of H-S/MRC,
SD, and MRC were obtained as special cases of our results.
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