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Abstract— In this paper, we derive the symbol error prob-
ability (SEP) for maximal ratio combining with an arbi-
trary number of diversity branches in Nakagami fading with
integer-order fading parameters, where the instantaneous
signal-to-noise ratios (SNR’s) of the diversity branches are
not necessarily independent or identically distributed. We
consider coherent detection of M-ary phase-shift keying and
quadrature amplitude modulation. The proposed problem
is made analytically tractable by: 1) transforming the phys-
ical diversity branches into a “virtual branch” domain; and
2) using alternative definite integral representations of the
conditional SEP with finite limits; which results in a sim-
ple derivation. We further obtain a canonical structure for
the SEP as a weighted sum of the elementary SEP’s, which
are the SEP’s of a non-diversity (single-branch) system with
appropriate fading parameters and average SNR, whose
closed-form expressions are well-known.

I. INTRODUCTION

With maximal ratio combining (MRC), the received
signals from multiple diversity branches are cophased,
weighted, and combined to maximize the output signal-to-
noise ratio (SNR). Early work on the evaluation of symbol
error probability (SEP) of MRC has mainly concentrated
on Rayleigh and Rician channels [1], {2], [3]. Recently, Nak-
agami fading channels have received considerable attention
in the study of the various aspects of wireless systems [4],
(5], (6], [7), {8, [9], [10]. The Nakagami distribution, also
known as the “m-distribution,” provides greater flexibility
in matching experimental data. Results have shown that
the Nakagami distribution fits experimental data collected
in a variety of fading environments better than Rayleigh,
Rician, or log-normal distributions [11], [12], [13].

Analysis of MRC in Nakagami fading has typically as-
sumed that diversity branches are independent [5], [7], [9].
Consideration of correlated fading has been limited only
to dual-branch diversity [4], [5], with the exception of [8],
{10]. The studies in [8], [10], though, consider only binary
modulation with the assumption of equal m as well as aver-
age SNR’s among all diversity branches. Furthermore, [8]
assumed two specific correlation models, namely the equal-
correlation and exponential-correlation models.

However, in some cases the average SNR is not necessar-
ily equal for all the diversity branches and the fading statis-
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tics can also be different for each diversity branch. Some
examples of unequal average SNR and/or fading statistics
among all diversity branches are: 1) angle diversity us-
ing multiple beams where the average signal strength and
fading statistics can be different in each beam; 2) polariza-
tion diversity with high base station antennas where for a
vertically-polarized transmitter, the average received signal
strength at the horizontally-polarized antenna is typically 6
to 10 dB lower than at the vertically-polarized antenna; 3)
macrodiversity, where the shadow fading is different at each
antenna and different local scattering conditions can lead
to different fading statistics; and 4) Rake receivers, where
the distribution of signal power with delay is not uniform
and the first arriving multipath component is more likely
to be specular than the later components. In these cases,
exact expressions for the performance of MRC are not pre-
viously available in the literature.

In this paper, we derive the SEP for MRC with an ar-
bitrary number of diversity branches in correlated Nak-
agami fading channels, where the instantaneous SNR’s of
the diversity branches are not necessarily independent or
identically distributed. Specifically: 1) these SNR’s can
be arbitrarily correlated; 2) the SNR distributions can
be from different Nakagami families, i.e., fading parame-
ters (m’s) are not necessarily equal; and 3) the average
SNR’s (averaged over the fading) of the branches are not
necessarily equal. We consider coherent detection of M-
ary phase-shift keying (MPSK) and quadrature amplitude
modulation (MQAM). The proposed problem is made an-
alytically tractable by: 1) transforming the physical diver-
sity branches into a “virtual branch” domain; and 2) using
alternative expressions for the conditional error probabil-
ity. Note that we used the virtual branch technique in
[14] to determine the mean and variance of the combiner
output SNR for hybrid selection/maximal-ratio combining
(H-S/MRC). We extended [14] to derive analytical expres-
sions for the SEP with H-S/MRC for the case of identical
branches in [15] and non-identical branches in [16].

The canonical structure of the SEP emerges from our
derivation as a weighted sum of elementary SEP’s, which
are the SEP’s of single-branch reception with appropriate
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fading parameters and average SNR, whose closed-form ex-
pressions are well-known. Thus, lengthy derivations are
no longer needed for separate cases of wireless scenarios
with different numbers of diversity branches and correlation
models, as our results give a simple prescription for com-
puting the parameters of single-branch Nakagami channels,
the weights, and the number of terms in the sum. These
results extend previously-derived results to cover numerous
additional useful cases.

II. DIvERSITY COMBINING ANALYSIS
A. Preliminaries

Consider diversity reception in a correlated-fading envi-

ronment. The output of the 72 branch is modeled as!

At) = R {n(@e?} 1)

where 7;(t), i = 1,..., N, is the equivalent lowpass (ELP)

version of the it branch output, and f. is the carrier fre-
quency. The it branch ELP output is given by

ri(t) = cue 3% s(t) + ni(t) (2)

where n;(t) is an additive white Gaussian? noise (AWGN)
process, assumed to be independent of the received sig-
nal, with two-sided power spectral density Ny;, s;(t) is the
information-bearing signal with the average symbol energy
E,, a; is the fading amplitude and ¢; is the phase of the
it diversity branch. We model the o;’s as correlated Nak-
agami random variables (r.v.’s) with a marginal probability
density function (p.d.f.) given by

o) = s <m> gt/

Tlmo \ ®

where the fading parameter m; denotes the Nakagami fam-
ily, and ©; = E {a?}. Note that the o;’s can be from differ-
ent Nakagami families, where m; and ); are not necessarily
equal among the branches. We will refer to (m;, 917%'—) as
Nakagami parameter pairs. As in [6], we assume that the
m;’s are integers, noting that the measurement accuracy of
the channel is typically only of integer order.

The instantaneous output SNR with MRC is given by
(17]

N
MRC = D%, (4)
i=1

where ~; denotes the instantaneous SNR of the it2 diversity
branch defined by v; £ a?I—VEJ:. For a correlated Nakagami
fading channel, the marginal p.d.f. of 7; is given by

1 m; ™ mi—1_,—m;z/T;
gvi(m;mi/f‘i,mi)=m<?) gmlemmie/ T (5)

where the SNR averaged over the fading in the &
branch T; = E{v} = E{o?} £+ = Qif~. Let y £
1The notation R {-} denotes the “real-portion” operator. ‘

2The term “Gaussian” is used to denote “ELP complex circular
Gaussian.”
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(Y1,72, - - - »n) and denote the joint p.d.f. of v1,72,... , YN
by f..,({'yi}fvzl). In general,
N
Fr({)ite) # [ L v (@ma/Ts,ma) (6)

i=1
since the +;’s are correlated.

B. Virtual Branch Technique: The Key Idea

Conventional analysis of MRC in correlated Nakagami
fading is, in general, cumbersome and complicated since:
1) the 4i’s can be correlated; 2) the 4;’s can be from dif-
ferent Nakagami families where the m;’s are not necessar-
ily equal; and 3) the I';’s are not necessarily equal.® The
difficulty described above is alleviated in the following by
transforming the dependent physical branch variables into
a new set of independent virtual branches and expressing
the combiner output SNR as a linear function of the inde-
pendent virtual branch SNR’s.

Let X; be the 2m; x 1 vector defined by

Xi2[Xi1 Xig -+ Xigm)', i=12,:..,N, (7)
where (-)' denotes transpose, and the elements X, are
independent and identically distributed (i.i.d.) Gaussian
random variables with zero mean and variance given by

E {Xﬁk} = %‘; Let X be the Dr x 1 vector defined by

X & [Xxt x5 x4)°, (8)

where Dy = E,{il 2m; is twice the sum of the Nakagami
parameters.

By carefully constructing X, the statistical dependence
among the N correlated branches can be related to the sta-
tistical dependence among the elements of X. When there
is only second-order dependence, it suffices to construct the
covariance matrix of X given by Kx = E{XX*}. With-
out loss of generality, one can assume that the ;’s are
indexed in increasing order of their Nakagami parameters,
ie, my <mg < ... <mpn. We construct the correlation
among the elements X such that

Tr;

Tmg if i=j and k=1
. T [P
E{X:ixX;,)} pii\[ B my I i#5 but
kX5l =
v k=1=1,2,...,2min{m;, m;}
0, otherwise .

9)

This construction implies that the k2 entries of X; and X,
with i # j, are correlated for k = 1,2,... ,2min{m;, m;}.
However, all the entries of X; are mutually independent,
and all other entries are independent. The relationship
between the covariance of ; and «y; and the covariance of

3Note that our model includes the case where only a proper subset
of the branches have the same m;'s and/or T';’s. This is a subtle but
important difference with previous studies where the analyses given
in [5] and [8] required that the %’s are either all different or all

equal.
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the elements of X is given by:,

E{(v —E{n}ly-E{yub}

VVar{v:}Var{v;}

o min{m;, m;}
. max{mi,m]-} pi’j )

The lower and upper bounds for the correlation between
the two Nakagami branches-are-given by 0 < p,,,, <
min{m;,m;} 4 ‘

/ max{rn;,m; ;

Let {\i} be the set of L distifict eigenvalues of K X where
each A\, has algebralc multlphclty w1 such that Z, 1=
D7 = Z i1 2m1 It can be shown that each +; is infinitely
divisible [18], [19]. The infinite divisibility has implica-

tions on the statistical representatlon of the comblner out-
put SNR as i

>

Pryivy;

(10)

1

B A .
T™RC = 3O AVi; (11)

=1

where the notation = denotes “equal in their respective
distributions™ (or “equal in their respective Laws”) [18],
[19], and the virtual branch variables V;' are independent
chi-squared r.v.’s with y; degrees of-freedom. In deriving
(11), we have used the Karhunen-Loéve (KL) expansion
of the vector X [20].5 The characteristic function of V] is
given by

v 1 L w2
Denotingfvl()as the p.d.f. of V, andV——(Vl,Vz, VL),
the_]omtpdf ofVl,Vg,.. VL is,
{”l}z ~1) wa(vz (13)

III. SymBoOL ERROR PROBABILITY OVER THE CHANNEL
ENSEMBLE

The SEP for MRC in correlated Nakagami fading is ob-
tained by averaging the conditional SEP over the chan-
nel ensemble. This can be accomplished by averaging the
Pr{ I’YMRC} over the p.d.f. of the ymrc as.

P. = Epne {Pr{elmanc}} (14)
:/(; Pr{el’Y} Fnine ()75 (15)

4The fact that two N akagaml branches with different fading param-
eters m; and .mj cannot be completely correlated (i.e., Privy < 1) is
not a drawback in our statistical representatlon, and it is just a man-
ifestation of the basic fact that two r.v.’s with different distributions
can not be completely correlated.

5A similar technique employing a frequency-domain KL expansion
was used in [21] to study diversity combining in a frequency-selective
Rayleigh-fading channel. Another technique similar to the KL ex-
pansion was also used in [22] to study the reception of noncoherent
orthogonal signals in Rician and Rayleigh fading channels.
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where Pr {e|ymrc} is the SEP conditioned on the random
variable ymre, and fyypc () is the p.d.f. of the combiner
output SNR [23], [24]. Although, the evaluation of (15)
involves a single integration for averaging over the channel
ensemble, it requires the knowledge of the p.d.f. of ymre.-
The required p.d.f. of the r.v ymrc to evaluate (15) is ob-
tained in [8] for two specific correlation models, namely
the equal correlation and exponential correlation models,
with equal m as well as average SNR’s among the diversity
branches.

A. SEP for MPSK

For coherent detection of MPSK, an alternative repfesen—
tation Pr {elymrc}, involving definite integral with finite
limits, is given by (25], [26], [23], [27]

1 7° _.
Pr {empsk | Mrc} = ;/ e~ T MRC gg
0

where cvpsk = sin(r/M) and © = 7(M — 1)/M. Eval:
uation of (14) can be accomplished, using the technique
of [28], [29], by substituting the expression for ymrc di-
rectly in terms of the physical branch variables given by
(4) into (16), and averaging over the physical branch vari-
ables. Therefore the SEP for MPSK becomes

(16)

<]
Pompsic = = f ]E(,,,}{ - MK 7-} do (17y
= / / / ‘ﬁﬁ’sexzf’:l v (18)
(i . dyw do.

Note in (18) that, since the physical branches are corre-
lated, direct use of the method given in [28], [29] requires
an N-fold integration for the expectation operation in (17).
This can be alleviated by expressing ymrc in terms of the
virtual branch variables using (11) as:

1 [° . L, aV
;/0 Eqv, {e T it l} do

li

P, mpsk

1 [ [° = . .
= _/ /-/ e—-_fg‘rssg‘21=1)‘lvl (19)
m™Jo Jo 0
L ‘
x 11 fvi(w)dvi do.
=1

Exploiting the fact that V}’s are independent, (19) becomes:
e L

l/ H]E{e-%ﬁi‘%ﬂ"’} do

TJo 1

1 ek CMPSKA! N
_—— I l _EMPSKALY s (90
7r/o iy Vi ( sin® 6 ) (20)

The power of the virtual path technique is apparent by ob-
serving that the expectation operation in the above equa-
tion no longer requires N-fold integration.

Substituting (12) into (20) gives

P.Mmpsk =

sin? 6

1 r® L wi/2
P, = —/ [—————————:] dg. (21
MPSK =2 o ll;Il empsk 2\ +sin? 6 (1)
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Thus the derivation of the SEP for the coherent reception
of MPSK using N-branch MRC in correlated Nakagami
fading reduces to a single integral over § with finite limits,
where the integrand is an L-fold product of simple expres-
sions involving trigonometric functions with L < N.

B. SEP for MQAM

For coherent detectlon of MQAM with M = 2* for even
k, Pr{ e|'yMRc} is given by [29]

. /2 cMgA
q l./ e “sinZe 'MRCgg
-—Cc':n;z 8 YMRC do

Pr{emqam|TMRC} = o
/4

- %f— (22)

where ¢ = 4(1 — \71=), and cyqQam = m Using *

the virtual branch technique, similar to the steps used for
MPSK, the SEP for MQAM becomes

[ sin? ]#1/2

PeMAM = q—/

_q_l/
4 7

Again, the derivation of the SEP for coherent reception of
MQAM using MRC in correlated Nakagami fading reduces
to two terms, each consisting of a single integral over 6
involving a trigonometric function with finite limits.

CMQAM 20 + sin? 9

]“1/2 do. (23)

By
]_j [ sin? @

CMQAM 2); +sin? @

IV. CANONICAL EXPRESSIONS FOR SEP oF MPSK
AND MQAM

The results given in (21) and (23) are the SEP for co-
herent detection of MPSK and MQAM, respectively, using
N-branch MRC in correlated Nakagami channels. Specifi-
cally, the N diversity branches are correlated and m; and
I'; are not necessarily equal among the branches. The set
{A\1} consists of L distinct eigenvalues of the covariance ma-
trix Kx with each A; having algebraic multiplicity g;. The
{m}e  are related to the Nakagami parameters {m},
via Ez L= E 1 2m;.

Let us first consxder the simplest possible case, namely
single-branch reception (without diversity) in Nakagami
fading with (rny,T'1). For single-branch reception (N = 1),
Kx is a 2m; x 2m, diagonal matrix having only one eigen-
value (L = 1) of multlphcxty n1 = 2my. The eigenvalue
is \y =E{z},} = . Substituting the appropriate pa-
rameters into (21}, the SEP for single-branch reception of
MPSK in Nakagami fading reduces to

1o e ™
oot = [ ||
. o my

(24)

Note that (24) is equivalent to the SEP for reception of
MPSK over Rayleigh-fading channels usmg MRC with m;
identical branches having equal SNR's of #, and therefore
a closed-form expression for (24) can .be found in [30].
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Similarly, the SEP for single-branch receptlon of MQAM . -
can be reduced from (23) to

sin? 9

P mry) = o2 [ "
MQAM\™1,L11) = q - S VU TN
=MQ ’ o CMQAM % +sin2 0 _

/4 2 B N

- .

_a1 / __Ll’_‘_o_z._ de. (25)
4m cMQAM b +sin® @ . .

Note again that (25) is equivalent to the SEP for recep-
tion of MQAM over Rayleigh-fading channels using MRC
with m, identical branches having equal SNR’s of 5— and
therefore a closed-form expression for (25) can be found in
[31).

The quest for obtaining insights from (21) and (23) is at
its peak, which leads to an expansion of the integrand in
(21). It can be shown that the integer yu; is even for all I,
and therefore (21) can be rewritten as

LR sin? 9 k
e MPSK = Lk = —_— dg,
IZ; kzl / [CMPSK 2\ + sin? 0] A

(26)
where A;x's are weighting coefficients of the expansion.

Comparing (26) with (24)

: L w/2? :
P, mpsk = Z Z Ak Pevpsk(k, 2kA;) .

=1 k=1

(27)

Interesting insights can now be obtained from (27). The
SEP for MPSK using N-branch MRC in correlated Nak-
agami fading, where m; and I'; are not necessarily equal
among the branches, is simply the weighted sum of the
single-branch SEP’s. The single-branch SEP for the (I, k)-
entry is simply the SEP of single-branch MPSK recep-
tion over Nakagami channels with fading parameter k& and
Tir = 2k);. Note also that the single-branch SEP for the
(I, k)-entry is equivalent to the SEP of MPSK reception
over Rayleigh-fading channels using MRC with k identical
branches having equal SNR’s of 2);.

Similarly, (23) can be rewritten as

L m/2

P.mqam = Z Z A Pe MQAM(k 2kN) .

=1 k=1

(28)

Note that a similar structure, namely, a linear combination
of the simple “elementary SEP’s,” is evident from (28) for
MQAM. In other words the SEP for MQAM reception with
N correlated branches is simply the sum of the weighted
SEP’s for single-branch MQAM reception over Nakagamx
channels with parameter pairs (k, 2kA).-

V. CONCLUSIONS

We derived the symbol error probability for coherent de-
tection of MPSK and MQAM using maximal ratio combin- -
ing with an arbitrary number of diversity branches in Nak- -
agami fading with integer-order fading parameters, where
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the instantaneous SNR’s of the diversity branches are not
necessarily independent or identically distributed.

The proposed problem was made analytically tractable
by: 1) transforming the physical diversity branches into
the “virtual branch” domain; and 2) using alternative def-
inite integral representations of the conditional SEP’s for
MPSK and MQAM with finite limits; which resulted in
a simple derivation for the SEP in correlated Nakagami
fading. We further obtained a canonical structure for the
SEP as a weighted sum of the elementary SEP’s, which are
the SEP’s of the non-diversity (single-branch) system with
appropriate fading parameters and average SNR.

Thus, lengthy derivations are no longer needed for
each wireless scenario with different numbers of diversity
branches and correlation models, as our results give a sim-
ple prescription for computing the parameters of single-
branch Nakagami channels, the weights, and the number
of terms used in the sum to calculate the result. Our re-
sults extend previously-derived results to cover numerous
additional useful cases.
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