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Abstract—In this paper, we derive the symbol error proba-
bility for coherent detection of several types of M-ary modu-
lation schemes using maximal ratio combining with an arbi-
trary number of diversity branches. We consider correlated
Nakagami fading channels, where the instantaneous signal-
to-noise ratios of the diversity branches are not necessarily
independent or identically distributed. The proposed prob-
lem is made analytically tractable by transforming the corre-
lated physical diversity branches into independent “virtual
branches.”

I. INTRODUCTION

ECENTLY, Nakagami fading channels have received
considerable attention in tbe study of various aspects
of wireless systems {1}, [2], [3], [4], (5], [6], [7}, [8]). The Nak-
agami distribution, also known as the “m-distribution,”
provides greater flexibility in matching experimental data.
Experimental results have shown that the Nakagami dis-
tribution fits experimental data collected in a variety of
fading environments better than Rayleigh, Rician, or log-
normal distributions [9], [10}, [11]. The Nakagami family
of distributions span from the one-sided Gaussian distri-
bution (m=1/2) to the non-fading channel case (m = 00),
and contain Rayleigh fading (m=1) as a special case; along
. with the cases of fades that are more severe than Rayleigh
(1/2 < m < 1) and fades that are less severe than Rayleigh
(1 < m). They can also be used as an approximation to
log-normal and Rician distributions for a certain range of
average SNR’s [3].

Analysis of MRC in Nakagami fading has typically as-
sumed that diversity branches are independent [1], {6}, [8].
Consideration of correlated fading has been limited only
to dual-branch diversity [1], {12], with the exception of (7],
[13]. The studies in [7], [13], though, consider only binary
modulation with the assumption of equal m as well as aver-
age SNR’s among all diversity branches. Furthermore, [7)
assumed two specific correlation models, namely the equal-
correlation and exponential-correlation models.

However, in some cases the average SNR is not necessar-
ily equal for all the diversity branches and the fading statis-
tics can also be different for each diversity branch. Exam-
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ples include co-located antenna arrays, widely spatially-
separated antennas of a macrodiversity system, frequency
bins of a channelized receiver, or fingers of a Rake re-
ceiver in a wireless communication system,- where MRC
mitigates the effect of multipath fading. Some examples
of unequal average SNR and/or fading statistics among all
diversity branches are: 1) angle diversity using multiple
beams where the average signal strength and fading statis-
tics can be different in each beam; 2) polarization diver-
sity with high base station antennas where for a vertically-
polarized transmitter, the average received signal strength
at the horizontally-polarized antenna is typically 6 to 10
dB lower than the vertically-polarized antenna; 3) macro-
diversity, where the shadow fading is different at each an-
tenna and different local scattering conditions can lead to
different fading statistics; and 4) Rake receivers, where the
distribution of signal power with delay is not uniform and
the first arriving multipath component is more likely to
be specular than the later components. In these cases,
closed-form expressions for the performance of MRC are
not previously available in the literature.

In this paper, we derive the exact SEP expressions for
coherent detection of several types of M-ary modulation us-
ing MRC with an arbitrary number of diversity branches.
We consider correlated Nakagami fading channels, where
the instantaneous signal-to-noise ratios (SNR’s) of the di-
versity branches are not necessarily independent or identi-
cally distributed. Specifically: 1) these SNR’s can be ar-
bitrarily correlated; 2) the SNR distributions can be from
different Nakagami families, i.e., the fading parameters m’s
are not necessarily equal; and 3) the average SNR's (aver-
aged over the fading) of the branches are not necessarily
equal.

II. DiversiTY COMBINING ANALYSIS

A. Preliminaries

With MRC, the received signals from multiple diversity
branches are cophased, weighted, and combined to maxi-
mize the output SNR. The instantaneous output SNR with
MRC is given by [14] as

N
TMRG = Y ¥is
i=1

where -; denotes the instantaneous SNR of the ith diversity
branch and N is the number of available diversity branches.
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The instantaneous SNR can be expressed by

2 Es
* Noi '

Yta 2
where E; is the average symbol energy, and «; is the in-
stantaneous fading amplitude and Ny, is the noise power
spectral density of the s branch.

For a correlated Nakagami fading channel, the marginal
p.d.f. of a; is Nakagami distributed, and thus the marginal
p.d.f. of ; is given by

1 mi\™

Iy (z;m;/Ti,my) = m (ﬁ) xm«-le-maz/l‘a’ (3)
where m; denotes the Nakagami family and the SNR av-
eraged over the fading in the ! branch is T; = E {x}.
Note that the ¢;'s can be from different Nakagami fami-
lies, where m; and I'; are not necessarily equal among the
branches. We will refer to (m;,I';) as Nakagami parameter
pairs. As in [4], we assume that the m;’s are integers, not-
ing that the measurement accuracy of the channel is typ-
ically only of integer order. Let v £ (v1,72,... ,Yn) and
denote the joint p.d.f. of ¥1,7v2,... ,vL by f'y({’ﬁ‘}{il)- In
general,

N
Fr (w3 # T gv(@ime/Ti,mi) (4)
i=1

since the <;’s are correlated.

B. Virtual Branch Technique: The Key Idea

Conventional analysis of MRC in correlated Nakagami
fading is, in general, cumbersome and complicated since:
1) the ,’s are correlated; 2) the ;’s can be from different
Nakagami families where the m;’s are not necessarily equal;
and 3) the T'y’s are not necessarily equal.' The difficulty
described above is alleviated in the following by transform-
ing the dependent physical branch variables into a new set
of independent wirtual branches and expressing the com-
biner output SNR as a linear function of the independent
virtual branch SNR's.

Let X; be the 2m; x 1 vector defined by

Xi 2 ([ Xi1 Xig - Xigmi®s,  i=1,2,...,N, (5)
where (-)¢ denotes transpose, and the elements X;x, are
independent and identically distributed (i.i.d.) Gaussian

random variables with zero mean and variance given by
2 | _ Iy
E{x2.} = £

Let X be the Dy x 1 vector defined by

X2 [xtx; - X4, ©)

INote that our model includes the case where only a proper subset
of the branches have the same m;’s and/or I';’s. This is a subtle but
important difference with previous studies where the analyses given
in [1] and [7) required that the —'['%‘?’s are either all different or all
equal.

where Dy = SN 2m; is twice the sum of the Nakagami
parameters.

By carefully constructing X, the statistical dependence
among the NV correlated branches can be related to the sta-
tistical dependence among the elements of X. When there
is only second-order dependence, it suffices to construct the
covariance matrix of X given by Kx = E{XX*'}. With-
out loss of generality, one can assume that the ~;'s are
indexed in increasing order of their Nakagami parameters,
ie, m <mg <...<my. We construct the correlation
among the elements X such that

P if i=j and k=1
vk, if i#j but

E{XixXji} = P\ 2mi am; # .

k=10=12,...,2min{m;,m;}
0, otherwise.

Y]
This construction implies that the kt entries of X; and X i
with i # j, are correlated for k = 1,2,... ,2min{m;, m;}.

However, all the entries of X; are mutually independent,

- and all other entries are independent. The relationship

between the covariance of «; and «y; and the covariance of
the elements of X is given by:

o & EL0i —E{nh)(; ~E{wh}
. VVar{x}Var{v}

_ min{m;, m;} o
max{m;,m;} Pig -

The lower and upper bounds for the correlation between
the two Nakagami branches are given by 0 < p,,, <

/min%ms,mz'g 2
max{m;,m;} °

Let {\;} be the set of L distinct eigenvalues of Kx where
each A; has algebraic multiplicity y; such that ZzL=1 u =
Dr = 2:‘;1 2m;. By using the Karhunen-Loéve (KL) ex-
pansion of the vector X as in [15], the combiner output
SNR can be written as®

8)

L
mre = Y AV, 9)

{=1

where the notation < denotes “equal in their respective
distributions” (or “equal in their respective Laws”) [18],
[19], {20], and the virtual branch variables V; are indepen-
dent chi-squared r.v.’s with y; degrees of freedom. There-
fore the characteristic function (c.f.) of V; is given by

1 wif2
- 2ju] '

Yn(iv) 2 E {9V} = [ (10)

2The fact that two Nakagami branches with different fading param-
eters m; and m; cannot be completely correlated (i.e., py;y; < 1) is
not a drawback in our statistical representation, and it is just a man-
ifestation of the basic fact that two r.v.’s with different distributions
can not be completely correlated.

3 A similar technique employing a frequency-domain KL expansion
was used in [16] to study diversity combining in a frequency-selective
Rayleigh-fading channel. Another technique similar to the KL ex-
pansion was also used in [17] to study the reception of noncoherent
orthogonal signals in Rician and Rayleigh fading channels.

71



TABLE 1
PARAMETERS FOR SPECIFIC MODULATION SCHEMES.

Modulation Scheme | K ax(9) ok (0) O
MPSK 1 1 sin? (%) esc?(0) | 7 (1 - )
MQAM 2| 4 (1 - -\/17) () z

2
~(1-2g) | e ose0) z
MPAM 1 2-4) = csc2(6) 4
BFSK 1 1 1 csc?(8) z
BFSK pin 1 1 3 (1+ &) csc?(9) z
DE-BPSK 2 2 csc2(8) z
-2 csc?(9) z
MSK 2 2 csc?(8) 2
-1 csc?(9) z
Denoting fy;,(-) as the pdf of V; and V £ with minimum correlation (BFSKy;;,), coherent detection

V1, Va,..., VL), the joint p.d.f. of V1, V5,... , VL is,

L
SVt =[] ). (1)
i=1

III. SEP FOR M-ARY MODULATION OVER THE
CHANNEL ENSEMBLE

The SEP for MRC in correlated Nakagami fading is ob-
tained by averaging the conditional SEP over the channel
ensemble,

P. = Epyno {Pr {¢|7mrc}} (12)

where Pr {e|ymrc} is the SEP conditioned on the random
variable ymrc. For a general class of modulation schemes,
Pr {e|ymrc} can be expressed as

K O
Pr{elymrc} =) / ax(6) e~ #@mme dg - (13)
k=1 o

where ax (), ¢x(6) and B are parameters particular to the
specific modulation format and are independent of ymgc.
Table I lists these parameters for some common coherent
modulations:* M-ary phase shift keying (MPSK), M-ary
square quadrature amplitude modulation (MQAM) with
M = 2! and ! even, M-ary pulse amplitude modulation
(MPAM), binary frequency shift keying (BFSK), BFSK

4Since MRC requires channel phase estimates, it is generally used
in conjunction with coherent modulation schemes. If channel phase
estimates are not available, then one may resort to diversity com-
bining techniques such as postdetection equal gain combining (EGC)
with noncoherent or differentially coherent modulation.

of differentially encoded BPSK (DE-BPSK), and precoded
minimum shift keying (MSK) [21], [22], [23].

Evaluation of the SEP can be accomplished using the
techniques of [24], [25], by substituting the expression for
yMmrc directly in terms of the physical branch variables,
which gives

K O
P, = Z/) ak(O) ]E(‘Y.'} {e-'ﬁk(o) =k, ‘Y.'} dé (14)
k=1

K Oy ) oo N
= Z/ ax(6) /// e~ @ X, ™
=1 Jo oJo Jo

X fon({WHL) dyn . dyadmi d6. (15)
Note in (15) that, since the physical branches are corre-
lated, direct use of the methods given in [24], [25] requires
an N-fold integration for the expectation operation in (14).
This can be alleviated by expressing yMRrc in terms of the
virtual branch variables using (9) as:

K O .
P = Z/(; a‘k(e) E{Vn) {e_¢"(o) i /\lVl} d9
k=1

K (64 L i
= > [Ta® [Tvu (-econy a8, (16)
k=170 =1

where we have used the fact that the Vs are independent.
The effectiveness of the virtual path technique is apparent
by observing that the expectation operation in the above
equation no longer requires an N-fold integration.
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Substituting (10) into (16) gives

K (T8 L 1 w/2
Pezéfo “k“”g[——uwk(aw] de. (17)

Thus the derivation of the SEP for the coherent detection of
several types of M-ary modulation using N-branch MRC in
correlated Nakagami fading reduces to a single integral over
@ with finite limits, where the integrand is an L-fold prod-
uct of a simple expression involving trigonometric functions
with L < N.

IV. SpEcIAL CASES

In this section, we study some special cases of the results
obtained in the previous section.

A. Single-Branch Reception

Let us first consider the simplest possible case, namely
single-branch reception (without diversity) in Nakagami
fading with (my,T'1). For single-branch reception (N = 1),
K is a 2m; X 2m, diagonal matrix having only one eigen-
value (L = 1) of multlphclty #1 = 2my. The eigenvalue
s\ =E {:1:1 J} z—3-. Substituting the appropriate pa-
rameters into (17), the SEP for coherent detection of M-
ary modulation using a single-branch receiver in Nakagami
fading reduces to

K O 1 m ’
Pe=k2=:1 /0 ax(6) [m] do. (18)

Note that (18) is equivalent to the SEP for coherent de-
tection of M-ary modulation in Rayleigh-fading channels

using MRC with m, identical branches having equal SNR's
of 1L

B. Independent Nakagami Channels
B.1 Case 1: All Equal %—

Here, we consider MRC with independent Nakagaml fad-
ing with parameter pairs (m;, [';) such that —L are equal for
all N branches. Note that this includes the case of m; = m
and I'; = I". In this case, Kx is a 2mN x 2mN diagonal
matrix having only one eigenvalue (L = 1) of multiplicity

g1 = 2mN. The eigenvalue is A\; = %, and

K R 1 mN
pe=k§=:1 /0 0 (6) [mg] . (19)

B.2 Case 2: All Distinct 5t

Here, we consider MRC with independent Nakagaml fad-
ing with parameter pairs (m;, I';) such that # are distinct
for all N branches. Note that this includes the case for
equal m; but distinct T';.5 In this case, Kx has N distinct

5This case was analyzed in [6] by approximating the sum of the
squares of Nakagami r.v.’s by a single Nakagami r.v. with appropriate

parameters. This approximation becomes exact when the I';’s are all
equal.

eigenvalues given by A = 2 l =1,...,N, each with

multiplicity p; = 2my. The SEi’ is given by

P, = Z/ak(O)H[1+¢(a) } . (20)

C. Correlated Nakagami Channels
C.1 Dual-branch diversity

Consider dual-branch MRC in Nakagami fading with cor-
relation coefficient p and parameter pairs (mq,I';) and
(mg,T'2). In general, there are three distinct eigenval-
ues (L = 3) with multiplicities g3 = p2 = 2m; and

= 2(mz — m;). Using these parameters, the SEP for
coherent detection of M-ary modulation using dual-branch
MRC in correlated fading is given by (17) with

I Y 'z ) ( I's Iz )2 T
A= | ——4+—)+ — =) - =2 (1-p?),
! (Zml +2mz 2my +2m2 my mz( )
r, I, ) ( r, , Iy )’ I I,
Ay o= | — 4+ —} — —_—t— ) - —=—=(1-p?), d
2 2m, + 2mg 2my + 2m2 my Tng( P?), en
T2
A3 = — .
3 2mg

C.2 Identical Nakagami Channels with Arbitrary Correla-
tion
Consider N branch MRC in Nakagami fading, with arbi-
trary correlation where the m;’s and I';’s are equal for all
branches. This includes the two special cases considered in
{7] with two specific correlation models, namely equal corre-
lation and exponential correlation. In this case, the {};}’s
are the L distinct eigenvalues of the block-diagonal covari-
ance matrix having 2m identical N x N diagonal blocks
given by

1 p2 ... ;N
r |,z 1 .- p2nN
Ko=gm| - . (21)
PN PN --- 1

The SEP in correlated Nakagami fading can be obtained by
using the appropriate eigenvalues and corresponding mul-
tiplicities in (17).

V. NUMERICAL RESULTS

In this section we graphically display the SEP results for
coherent detection of QPSK using N-branch MRC in Nak-
agami fading. Figure 1 displays the case for i.i.d. Nakagami
channels with equal m, as well as I, among all branches.
It is apparent that the SEP performance improves with
increasing m and N.

Figures 2 and 3 depict the case of identical Nakagami
channels, but with exponential correlation. The parame-
ters I' and m are equal for each branch and the correlation
matrix in (21) has elements p; ; = pl*=JIl. It is noted that
the SEP performance degrades as the correlation coefficient
increases.
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In Fig. 4, the case of identical Nakagami channels with
a tridiagonal correlation matrix is shown. The off-diagonal
elements are all equal to zero except for the first off-
diagonals py2 = p. The effect of the correlation is seen
to be slightly less severe than for the exponential correla-
tion model.

VI. CONCLUSIONS

We derived the SEP for coherent detection of several
types of M-ary modulation using maximal ratio combining
with an arbitrary number of diversity branches in corre-
lated Nakagami fading channels, where the instantaneous
SNR’s of the diversity branches are not necessarily inde-
pendent or identically distributed. A general expression
was derived in terms of the parameters of the specific mod-
ulation scheme.

The proposed problem was made analytically tractable
by transforming the physical diversity branches into the
“virtual branch” domain. This work obviates the need
for lengthy derivations in separate scenarios with different
number of diversity branches and correlation models, as our
results give a simple prescription for evaluating the exact
SEP performance. Our results extend previously-derived
results to cover numerous additional useful cases.
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Fig. 1.

Symbol Error Prebability (SEP)
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The symbol error probability for QPSK with MRC as a
function of the average SNR per branch in dB for i.i.d. Nakagami
channels with parameter m = 1, 2 and 3. The number of diversity
branches N = 3 for the upper set of curves and N = 6 for the
lower set of curves.
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Fig. 2. The symbol error probability for QPSK with MRC as a func-

tion of the average SNR per branch in dB for identical Nakagami
channels with exponential correlation. The correlation coefficient
p=0,0.5,0.7 and 0.9 with parameter m = 1. The number of di-~
versity branches N = 3 for the upper set of curves and N = 6 for
the lower set of curves.
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Fig. 3. The symbol error probability for QPSK with MRC as a func-

Symbol Error Probability (SEP)

tion of the average SNR per branch in dB for identical Nakagami
channels with exponential correlation. The correlation coefficient
p =0,0.5,0.7 and 0.9 with parameter m = 3. The number of di-
versity branches N = 3 for the upper set of curves and N = 6 for
the lower set of curves.
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Fig. 4. The symbol error probability for QPSK with MRC as a func-
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tion of the average SNR per branch in dB for identical Nakagami
channels with tridiagonal correlation. The correlation coefficient
p = 0,0.3,0.4 and 0.5 with parameter m = 1. The number of
diversity branches N = 3 for the upper set of curves and N = 6
for the lower set of curves.



