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Abstract— Hybrid selection/maximal-ratio combining (H-
S/MRC) is a reduced-complexity diversity combining
scheme, where L out of N diversity branches (with the
largest signal-to-noise ratio (SNR) at each instant) are
selected and combined using maximal-ratio combining
(MRC). In this paper, we derive closed-form expressions for
the symbol error probability (SEP) of a H-S/MRC diversity
system with arbitrary L and N. We consider coherent de-
tection of M-ary phase-shift keying (MPSK) for the case of
independent Rayleigh fading with equal SNR averaged over
the fading.

I INTRODUCTION

HE CAPACITY of wireless systems'in a multipath en-

vironment can be increased by diversity techniques [1},
such as selection combining (SC) or maximal-ratio combin-
ing (MRC) {2]. SC is the simplest form of diversity combin-
ing whereby the received signal is selected from one out of
N available diversity branches. In MRC, the received sig-
nals from all the diversity branches are weighted and com-
bined to maximize the instantaneous signal-to-noise ratio
(SNR) at the combiner output.

Though a high diversity order is possible in many situ-
ations, it may not be feasible.to utilize all of the available
branches. For example, a large order of antenna diversity
may be obtained, particularly at higher frequencies such as
the PCS bands, using spatial separation and/or orthogo-
nal polarizations. Similarly, for spread spectrum receivers
operating in dense multipath environments, the number
of resolvable paths (or diversity branches) increases with
the transmission bandwidth (3], [4]. However, the available
correlator resources limit the number of paths that can be
utilized in a typical Rake combiner [4]. _

This has motivated the study of diversity combining
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techniques that process only a subset of the available diver-
sity branches with limited resources. One notable example
is hybrid selection/maximal-ratio combining (H-S/MRC)
which selects the L branches with the largest SNR at each
instant, and then combines these branches to maximize the
SNR. Recently, H-S/MRC has been considered as an effi-
cient means to combat multipath fading (5], [6], [7], 8], |9].
In [6], the bit error rate (BER) performance of H-S/MRC
with L = 2 and L = 3 out of N branches was analyzed, and
it was pointed out that “the expressions become extremely
unwieldy” for L > 3. The average SNR of H-S/MRC was
derived in [7]. In [8], a “virtual branch” technique was
introduced to succinctly derive the mean as well as the
variance of the combiner output SNR of the H-S/MRC di-
versity system. In [9], we derived exact expressions for the
SEP of H-S/MRC that involve a single integral with finite
limits. .

In this paper, we derive closed-form expressions for the
symbol error probability (SEP) of a H-S/MRC diversity
system with arbitrary L and N. We consider coherent de-
tection of M-ary phase-shift keying (MPSK) for the case
of independent Rayleigh fading with equal SNR averaged
over the fading. We obtain a canonical structure for the
SEP of H-S/MRC as a weighted sum of the elementary
SEP’s, which are the SEP’s for MRC of independent and
identically distributed branches.

II. HyBRID S/MRC ANALYSIS VIA THE VIRTUAL
BRrRANCH TECHNIQUE

A. Hybrid-S/MRC

Let +; denote the instantaneous SNR of the it diversity
branch defined by
E
A 2 s
i = Qg ) 1
Rl v (1)

where E; is the average symbol energy, and «; is the in-
stantaneous fading amplitude and Ny; is the noise power
spectral density of the 72 branch. We model the ;s as con-
tinuous random variables with probability density function
(p.df.) fy,(z) and mean T'; = E {v;}.
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APPENDICES
Appendiz I: Decomposition Method
Let the function f(z) be defined as

f(‘m)’: ﬁ (cnc:Lt)“" a

n=1

(23)

where {~c,} are the N distinct poles of f(x), with each
having algebraic multiplicity pu,,.
We can express f(z) as a weighted sum of elementary
: k
functions of the form ( E::L—z) , which results in the de-

composition formula [17]

N pn k
W, . 24
CE»Y e (222) (24)
The coefficients W, , of the expansion for n =
1,...,N, k=1,...,pu, are given by
1 grn—k
nk = Ck (H _ k)| dxbn—k {m ( c’"-)}lz;:O (25)

By using Faa di Bruno’s formula for the derivatives of a
composite function as in [18], we can compute (25) as

N u
C P
Wn,k: H( £ ) X
ool \Cp ~Cn
p#ENR
lq
Hn—k N
1 1 Cn q
S Malizm(z=)| - o
(it i) a=t T | T p=1 nT o
0Kyl —kSpn~k p7n

L2l (un—k),, —k=pn—k

Appendiz II: Evaluation of the Elementary SEP Integral
Jn,k (Cn, 9)

By using the binomial theorem, the indefinite integral

1 sin20 1"
J cn, 0) 2 —/ —_— df 27
e 0) &2 [ |2 ()
can be shown to be equivalent to
Jn,k(cm = —9 + Z < ) nz(cm 9) (28)
where
1/ 1
Znilcn,0 é—‘/————_dﬁ‘ 29
nilcn,0) = (l+cnsin2 0)i ( )
Letting tand = \_/ﬁtan ¢, then 8 = g(¢) 2
tan~! ( +lcn tan ¢). The Jacobian of this transforma-

tion is

_ . sec? ¢

Using (30) along with algebraic manipulations, the integral
in (29) can be written in terms of the variable ¢ as

11 _
Fnslom 8(9)) = %’m»/(lmncos%) "dg
1 1 i—1 i—1 l
T r (1t e )% F. 31
”,(1+cn)i—%§< ! >°n 2(¢), (31)

where
Fa(g) & / cos? ¢ dg (32)

We now focus on the evaluation of the indefinite integral

Fy(¢). Note that Fo(¢) = ¢, and integrating by parts
using
Fu(@) = [ o' gcoss o, (33)
we obtain the recursion for I = 1,2,... as
0s?~1 ¢sin 20-1
Ful) = X230 PV g
We can express (34) as
Foi(¢) = Soi—2(¢) + Tor—oFoy2(d), (35)
where
0s%~1 ¢sin
Sa-2(¢) = —-——-—2l¢ ¢, 1=1,2,... (36)
21 —
Tz 2 = ( 57 1), 1=12... (37

Solving the recursion in (35) yields

1-1 [i=1 -1 ]
Fa(¢) = Sa-a(d)+ [H Taqj’ Sap-a(¢) + {H Ty | ¢ (38)

p=1 | ¢=p q=0
Substituting (36) and (37) into (38) gives
(20! ]? cos?—? d)

sm¢ 47’[
i [+ 523 Ll e

. (2l) tand) 1
= [(b + Z up)p (1 + tan? ¢)? ] - (39)

Now by substituting ¢ = g~1(0) we obtain,

e (O &)

=0

— 0
X [tan \/1+cntan@)+\/1+ Cn tan

2
[
X Z ] (40)
p=1

[I>

Fu(¢)

In,i(cna 0) =

4P 1
(1+ (1 + ¢n) tan?6)?
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The instantaneous output SNR. of the H-S/MRC system
is given by

L
Ys/MRC = Z7(i)

i=1

1<L<N, )

where 7(;) is the ordered v, i.e., yay > v@2) > ... > vV,
and N is the number of available diversity branches [8]. It
is apparent from (2) that SC and MRC are special cases
of H-S/MRC. Note that the possibility of at least two
equal () is excluded, since '7(,2 # vy almost surely for
continuous random variables -;.© We assume in this study
that the +;’s are independent with equal average SNR, i.e.,
I's=Tfori=1,...,N.

B. Virtual Branch Transformation

It is important to note that the -y;)’s are no longer inde-
pendent, even though the underlying -;’s are independent.
Hence, the analysis of H-S/MRC using the ordered physi-
cal branch variables 7(;)’s is cumbersome and complicated.

This is alleviated in [8] by transforming the instantaneous

SNR of the ordered diversity branches, ), into a new set
of virtual branch instantaneous SNR’s, V;, using the fol-
lowing relation:

Y@y = Z 'T'Z'Vn . (3)
n=t

It- can be verified that the instantaneous SNR’s of the
virtual branches are i.i.d. normalized exponential random
variables. The key advantage of this formulation is that it
allows the instantaneous output SNR for H-S/MRC to be
expressed in terms of the i.i:d. virtual branch SNR variables
as

. N -
YsMRC = D _bnVa, . (4)

n=1

where the coefficients b, are given by

L,

C. Symbol Error Probability over the Channel Ensemble

The SEP for H-S/MRC in 'multipath-fading‘environ—
ments is obtained by averaging the conditional SEP over
the channel ensemble as

n<L
otherwise .

(5)

Pes/mrc = Eog pnc{ Pr {elvs/mrc}} (6)

where Pr {e|'ys/MRc} is the conditional SEP, conditioned
on the random variable vs/vrc. For coherent detection
of M-ary phase-shift keying (MPSK), a representation for

In our context, the notion of “almost sure” or “almost every-
where” can be stated mathematically as: if A" = {v@ = v} then
Pr{N} = 0 [10], [11].

Pr {e|fys /MRC} involving a definite integral with finite lim-
its is given by [12], [13], [14]

1 /% _.
Pr {elys/mrc} = }?/0 €T dg, (T)

where cypsk = sin2(7r/M) and © =7(M —1)/M.
Averaging Pr {e]*ys /MRC} over the channel ensemble can
be accomplished, using the technique of [15], [16], by sub-
stituting the expression for vs,mrc directly in terms of the
physical branch variables given in (2). Since the statistics
of the ordered paths are no longer independent, the direct
use of such a technique involves N-fold nested integrals,
which are in general cumbersome and complicated to eval-
uate. This problem is alleviated using a virtual branch
technique in (8] by expressing 7s/mrc in terms of the vir-

“tual branch variables via (3). In this framework, ezract

expressions for the SEP of H-S/MRC with arbitrary L and
N in Rayleigh fading is derived in [9] as

P 1 /‘" sin? 0 r
©S/MRC = o o LempskD +sin® @

sin® @ }

! [
X
: L a2
neL+1 | eMPSKD' 3 +sin® @

(8)

ITI. CLosED-ForRM EVALUATION OF THE SEP

The integral expression given in (8) requires numerical
integration in order to evaluate the SEP performance. In
this section, we provide a method to evaluate the integral -
in closed form as a canonical expression of finite weighted
sums of elementary SEP’s.

The SEP expression in (8) can be rewritten as

Hn

de,
(9)

N "
1 [® sin’ @
P, s/Mrc = = T —
™ Jo 1 CMPSKFHTJ_ + sin” @

n=

where N = N — L+ 1, and the Un’s are given by

L, n=1
H"_{l, n=2,...,N. (10)

Note that {cypskll L+ﬁ_1

} are all distinct and each has

algebraic multiplicity g, such that Z:Ll pun = N. Letting

z = ;nl,—g and ¢, = (CMPSKF m—%_—l> , the integrand in
(9) fits into the expression of (23) of Appendix I. Using the
decomposition method given in (24) of Appendix I, (9) can

be decomposed into

L
P, s/vrc = Z Wik T1,k(c1,0)
k=1 :
N—L+1
+ Z Wn,l j'n,l (Cn)e) s

n=2

(11)

where the expressions for the weighting coefficients W, »
and definite integral J, k(cx, ©) are given below. Equation
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(12) is in the form of a canonical expression as a weighted

sum of the elementary SEP’s.
With the aid of Appendix I, it can be shown that the
weighting coefficients Wy, i reduce to

t
L=k N—L+1 a
N 1 1 1
Win= (L5 () Oa(: —) ,
(L)(II)ZIL k) a=1 1l \a p=2 (p -1
0Kty g -k SL—k
I 42024 +(L- Ic)lL r=L—k
(12)
-fork=1,...,L,and
_ eyt & )L N 3
W"’l“(L+n-1) n—-1) Lin-2(N—-L+1-n)’ (13)
forn=2,..., N—L+1.

The definite integral Jp, x(cn,®) is in the form of an
elementary SEP and is given by
sinzo 1"

<}
G)é—l—/ —_—| df.
T Jo len! +sin’@

The indefinite integral of the form in (14) is evaluated in
Appendix II. After considering the integration limits, we
obtain

jn,k(cnu (14)

g < ) Tni(cn,©), (15)

where the definite integral Z,,

1
Jn,k(cna = -
7r

i{cn, ©) is given as

1 1 ,. Cn ! )
Zni(cn,©) = F(ch 2;( )( )(z)
X [tan_] (mtan@)+vl+cntan@
Logp 1
x ;Pﬁp(u (17 o) tan? e)p} . (16)

A. Limiting Case 1: SC System

SC is the simplest form of diversity combining whereby
the received signal from one of N diversity branches is se-
lected [2]. The output SNR of SC is given by

ysc = max {vi} =y - (17)
Note that SC is a limiting case of H-S/MRC with L = 1.
Substituting L = 1 in (12), the SEP becomes

N
Pe,SC = Z Wn,l \.7n,l (Cn,@) y

(18)
n=1
where W, 1 and ¢, for SC are given by
N
Wi =(—l)n+1< ), n=1,...,N, (19)
n
and
1\ !
Cn = <CMPSKF“) , (20)
n
respectively.

B. Limiting Case 2: MRC System

In MRC, the received signals from all diversity branches
are weighted and combined to maximize the SNR at the
combiner output [2]. The output SNR of MRC is given by

N N
YMRC = Z’Yi = Z’Y(i) )
i=1 i=1

Note that MRC is a limiting case of H-S/MRC with L = N.
It is clear from (12) and (13) that in this case W; x = 0 for
k=1,...,N -1, and W; y = 1. Therefore,

(21)

P.vre = J1,n(c1,9) (22)

where c; for MRC is given by ¢; = (empskl) ™"

IV. NUMERICAL RESULTS

In this section, we illustrate the SEP results derived
for H-S/MRC. The notation H-L/N is used to denote
H-S/MRC that selects and combines L out of N branches.
Note that H-1/1 is a single branch receiver, and H-1/N
and H-N/N are N-branch SC and N-branch MRC, respec-
tively.

Figure 1 shows the SEP for coherent detection of MPSK
with M=4 (QPSK) versus the average SNR per branch for
various L with N = 8 Note that SC and MRC upper
and lower bound, respectively, the SEP for H-S/MRC. It
is seen that most of the gain of H-S/MRC is achieved for
small L, e.g., the SEP for H-S/MRC is within 1 dB of MRC
when L = N/2.

Figure 2 shows the SEP for coherent detection of QPSK
versus the average SNR per branch for various N with
L = 2. Note that, although the incremental gain with
each additional combined branch becomes smaller as N in-
creases, the gain is still significant even with N = 8. Fur-
thermore, for L = 2 at a 10~3 SEP, H-S/MRC with N =8
requires about 10 dB lower SNR than 2-branch MRC.

V. CONCLUSIONS

We derived closed-form expressions of the symbol error
probability (SEP) for coherent detection of MPSK with
hybrid selection/maximal-ratio combining (H-S/MRC) in
multipath-fading wireless environments. With H-S/MRC,
L out of N diversity branches are selected and combined us-
ing maximal-ratio combining (MRC). This technique pro-
vides improved performance over L branch MRC when ad-
ditional diversity is available.

We analyzed this system using a “virtual branch” tech-
nique which resulted in a simple derivation of the closed-
form SEP expressions for arbitrary L and N. We further
obtained a canonical structure for the SEP of H-S/MRC
as a weighted sum of the elementary SEP’s, which are the
SEP’s for MRC of independent and identically distributed
branches. These closed-form expressions do not involve
hypergeometric series or special functions and are valid for
arbitrary modulation levels.
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Symibol Esvor Probability (SEP)

Fig. 1. The symbol error probability for coherent detection of QPSK
with H-S/MRC as a function of the average SNR per branch in
dB for various L with N = 8. The curves are parameterized by
different L starting from the upper curve representing H-1/8, to
the lowest curve representing H-8/8.
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Fig. 2. The symbol error probability for coherent detection of QPSK
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with H-S/MRC as a function of the average SNR per branch in
dB for various N with L = 2. The curves are parameterized by
different N starting from the upper curve representing H-2/2, to
the lowest curve representing H-2/8.



