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Abstract— In this paper, we develop an analytical frame-
work to study the performance of wireless systems using
maximal ratio combining (MRC) with an arbitrary number
of diversity branches in correlated multipath fading. We
consider the coherent detection of digital signals received
over correlated Nakagami fading channels, where the in-
stantaneous signal-to-noise ratios (SNR’s) of the diversity
branches are not necessarily independent or identically dis-
tributed. Specifically: 1) these SNR’s can be arbitrarily
correlated; 2) the SNR distributions can be from different
Nakagami families, i.e., fading parameters (m’s) are not nec-
essarily equal; and 3) the average SNR’s (averaged over the
fading) of the branches are not necessarily equal.

We derive closed-form expressions for three performance
measures of a MRC diversity system: 1) probability density
function (p.d.f.) of the combiner output SNR; 2) symbol er-
ror probability (SEP) for coherent detection; and 3) outage
probability. We obtain a canonical structure for these per-
formance measures as a weighted sum of the corresponding
expressions for a non-diversity (single-branch) system with
appropriately-defined parameters. This result is fundamen-
tal: the canonical structure depends only on the properties
of the channel and diversity combiner, and not on the spe-
cific modulation technique. Calculations of SEP for specific
modulation techniques are illustrated through examples.

I. INTRODUCTION

AXIMAL ratio combining (MRC) has been known

to improve the reliability of transmission systems for
more than four decades [1], [2], [3]. With maximal ra-
tio combining, the received signals from multiple diversity
branches are cophased, weighted, and combined to max-
imize the output signal-to-noise ratio (SNR). These di-
versity branches can be colocated antenna arrays, widely
spatially-separated antennas of a macrodiversity system,
frequency bins of a channelized receiver, or fingers of a Rake
receiver in a wireless communication system, where MRC
mitigates the effect of multipath fading. Early work on the
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evaluation of symbol error probability (SEP) of MRC has
mainly concentrated on Rayleigh and Rician channels [4],
(5], 3}-

Recently, Nakagami fading channels have received con-
siderable attention in the study the various aspects of wire-
less systems [6], [7], [8], [9], [10], [11], [12], [13]. The Nak-
agami distribution, also known as the “m-distribution,”
provides greater flexibility in matching experimental data.
Experimental results have shown that the Nakagami dis-
tribution fits experimental data collected in a variety of
fading environments better than Rayleigh, Rician, or log-
normal distributions [14], [15], [16]. A comprehensive de-
scription of the Nakagami distribution is given in {17, and
the derivation and physical insights of the Nakagami-fading
model can be found in [16]. The Nakagami family of dis-
tributions span from the one-sided Gaussian distribution
(m=1/2) to the non-fading channel case (m = o0), and
contain Rayleigh fading (m=1) as a special case; along
with the cases of fades that are more severe than Rayleigh
(1/2 < m < 1) and fades that are less severe than Rayleigh
(1 < m). They can also be used as an approximation
to log-normal and Rician distributions for a certain range
of average SNR'’s [8]. Furthermore, the Nakagami distri-
bution offers analytical convenience since it is a “central”
distribution. :

Closed-form expressions for the error probability of MRC
in Nakagami fading using independent branches, with the
same fading parameter “m,” but different average SNR,
on each branch, were obtained in [11] by approximating
the sum of the squares of Nakagami random variables
(r.v.’s) by another Nakagami r.v. with appropriate param-
eters. This was extended to the case of independent fading
with unequal ratios of m to average SNR for all diversity
branches in [13], where the result requires the evaluation
of a single integral with infinite limits. Performance of
MRC with independent diversity branches, for integer m
and unequal ratios of m to average SNR for all diversity
branches, was given in [6]. The analysis of MRC in corre-
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lated fading has been limited in previous papers to dual-
branch diversity [6], with the exception of [12]. The study
in [12], though, assumed two specific correlation models,
namely the equal-correlation and exponential-correlation
models; with equal m as well as average SNR’s among di-
versity branches. We point out in passing that these stud-
ies were done for a limited number of specific modulation
techniques.

However, in some cases the average received signal power
is not equal for all the diversity branches and the fading
statistics can also be different for each diversity branch.
Such cases include MRC with: 1) angle diversity using mul-
tiple beams, where the average signal strength and fading
statistics can be different in each beam; 2) polarization
diversity using horizontal and vertical polarization with
high base station antennas, where for a vertically-polarized
transmitter the average received signal strength is typically
6 to 10 dB lower for the horizontally-polarized antenna;
3) macrodiversity, where the shadow fading is different at
each antenna and/or the local ports are spaced far enough
such that different local scattering conditions lead to dif-
ferent fading statistics; and 4) Rake receivers, where the
distribution of signal power with delay is not uniform, and
the first arriving multipath component is more likely to
contain a specular component (corresponding to larger m)
and later components are more diffuse (m =~ 1). In these
cases, closed-form expressions for the performance of MRC
are not previously available in the literature.

In this paper, we develop an analytical framework to
study the performance of wireless systems using MRC with
an arbitrary number of branches in correlated-fading envi-
ronments. We consider coherent detection of digital sig-
nals over correlated Nakagami fading channels, where the
instantaneous SNR values of the diversity branches are
not necessarily independent or identically distributed. The
proposed problem is made analytically tractable by trans-
forming the physical diversity branches into the “virtual

- branch” domain. Note that we used the virtual branch
technique in [18] to determine the mean and variance of
the combiner output SNR for hybrid selection/maximal-
ratio combining. By averaging the conditional SEP over
the individual probability density function (p.d.f.) of the
virtual branch SNR’s, we derived the SEP in [19] for co-
herent reception of digital signals using MRC. The strik-
ing resemblance between the SEP expressions obtained in
119] for the two specific examples, namely phase-shift key-
ing (MPSK) and M-ary quadrature amplitude modulation
(MQAM), is the compelling impetus for our study in this
paper.

We derive the p.d.f. of the combiner output SNR. The
canonical structure of this p.d.f. emerges from our deriva-
tion as a weighted sum of elementary p.d.f.’s, which are the
p.d.f.’s of the single-branch SNR with appropriate fading
parameters and average SNR. This allows the derivation of
a closed-form expression of the SEP for arbitrary modula-
tion techniques, which is simply the weighted sum of the
elementary SEP’s, namely the SEP for the single-branch
reception. Finally, we derive the canonical structure for

the outage probability, where, similar to the SEP case, the
outage probability is a weighted sum of the outage proba-
bilities for the single-branch reception in Nakagami chan-
nels with appropriately-defined parameters.

II. DivERsITY COMBINING ANALYSIS
A. Preliminaries

Consider N-branch diversity reception in a correlated-
fading environment. The equivalent lowpass (ELP) version
of the 42 branch output is given by

ri(t):aisi(t)+ni(t), i=1,...,N, (1) )

where n;(t) is an additive white Gaussian! noise (AWGN)
process, assumed to be independent of the received sig-
nal, with two-sided power spectral density Ny;, s;(t) is the
information-bearing signal with the average symbol energy
E,, and ¢ is the it® diversity branch gain. We model the
a;’s as correlated Nakagami r.v.’s with a marginal p.d.f.
given by

fai(T)

2 mq ™ 2mi—1_-mir?/Q;
et ()

where the fading parameter m; denotes the Nakagami fam-
ily, and Q; = E {a?}. Note that the o;’s can be from differ-
ent Nakagami families, where m,; and I'; are not necessarily
equal among the branches. We will refer to (m;, Q,WE(:) as
Nakagami parameter pairs. As in [9], we assume that the
m;’s are integers, noting that the measurement accuracy of
the channel is typically only of integer order.

The instantaneous output SNR with MRC is given by [3]

N
TMRC = Z Vi
i=1

where v; denotes the instantaneous SNR of the ith diversity
branch defined by ; £ afT\,ET For a correlated Nakagami

fading channel, the marginal p.d.f. of v, is given by

1 m; ™ m;—1_-m;z/T;
— — 1 i i 4
['(m;) (n) ’ ‘ @

where the SNR averaged over the fading in the 2 branch
Iy = E{v} =E{a?} 5(“ = Q”—VE-S- The family of distri-
butions with p.d.f.’s of the form given in (4) is referred to
as the gamma family of distributions.?

()

gvi(zymy /Ty, my) =

B. Virtual Branch Technique: The Key Idea

Conventional analysis of MRC in correlated Nakagami
fading is, in general, cumbersome and complicated since:
1) the «y;’s are correlated; 2) the ;’s can be from different

1The term “Gaussian” is used to denote the “ELP complex circular
Gaussian.”

2In general, the gamma density is denoted by g+, (z;a,p), where
E{vi} = £, and Var{v:} = £ . The special case of a gamma dis-
tribution with o = —12- and p = % is a chi-squared distribution with k
degrees of freedom [20].
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Nakagami families where the m;’s are not necessarily equal;
and 3) the I';’s are not necessarily equal.> The difficulty
described above is alleviated in the following by transforin-
ing the dependent physical branch variables into a new set
of independent virtual branches and expressing the com-
biner output SNR as a linear function of the independent
virtual branch SNR’s.
Let X; be the 2m; x 1 vector defined by

Xz',l
x,2| N 5)
T : L * y
Xi,2m.-

where the elements of X;, X; ;’s, are independent and iden-
tically distributed (i.i.d.) Gaussian random variables with

zero mean and variance E ka} = % It can be shown
1 1]

that each +; is infinitely divisible [20], [21], [22]. The infi-
nite divisibility has implications on the statistical represen-
tation of v; as y; L X!X;, where the notation L denotes
“equal in their respective distributions” (or “equal in their

respective Laws”).4 Therefore

N
y™Re £ Y XIX: = X'X (6)

i=1
where X is the Dr x 1 vector defined by

Xy
P2y X2
x| (7)

XN

and Dy = Z,’il 2m; denotes twice the sum of the Nak-
agami parameters. In general, the p.d.f. of yyrc is not
equal to gy yre(T; B, %’E) However, for the special case
when the {X;}’s are independent and the 'I’,‘—:’s are all equal
%—L = 3 for some constant 3), then the p.d.f. of ymgc is

9vmrc (z; B, 221) [2017 [23]"

The statistical dependence among the N correlated
branches can be related to the statistical dependence
among- the elements of X, by carefully constructing X.
When there is only second-order dependence, it suffices
to construct the covariance matrix of X given by Ky =
E{XX*'}. Without loss of generality, one can assume that
the «;’s are indexed in increasing order of their Nakagami
parameters, i.e., m; < mg < ... < my. We construct the

3Note that our model includes the case where only a proper subset
of the branches have the same m;’s and/or I’;’s. This is a subtle but
important difference with previous studies where the analyses given
in [6] and [12] required that the %‘;i’s are either all different or all

equal.

4We stress that, in general v; # Xi‘X,- and the notation = is used
to merely indicate that only the respective distributions (or Laws) are
equal [20], [21], [22]. One can view X!X; as a statistical representa-
tion of -y;, and both forms can be used interchangeably in performing
statistical analyses. . :

correlation among the elements X such that

e if i=j and k=1
T, T; e s
Pij 5—"-’{'—#7—, if i#j5 but

E{X; X1} =
{XinXsa} k=1=1,2,...,2min{m;, m;}

0, otherwise .

(8)

This construction implies that the kt® entries of X; and X s
with i # j, are correlated for £ = 1,2,... ,2min{m;, m;}.
However, all the entries of X; are mutually independent,
and all other entries are independent.

The relationship between the covariance of ; and v; and
the covariance of the elements of X is given by:

E{(% — E{%:}( - E {%])}

VVar{vi}Var{vy;}

; min{mi,mj} 2
- \/ max{m;,m;} Pij- . ©)

The lower and upper bounds for the correlation between
the two Nakagami branches are given by 0 < p..,, <

min{m;,m;} 5
V max{mim;}

Let {A;} be the set of L distinct eigenvalues of Kx where
each \; has algebraic multiplicity u; such that ZtL=1 u =
Dr = Zil 2m;. The corresponding orthonormal eigen-

vectors are denoted by {¢;x}. Then the Karhunen-Loeve
(KL) expansion of the vector X is [24]

i
VA Wikdik
k=1

>

) p"lt"Yj

X =

L
(10)
1=

1

where the {W.}’s are independent zero-mean unity-
variance Gaussian r.v.’s. A similar technique employing a
frequency-domain KL expansion was used in [25] to study
diversity combining in a frequency-selective Rayleigh- .
fading channel. Another technique similar to KL expansion
was also used in [26] to study the reception of noncoherent
orthogonal signals in Rician and Rayleigh fading channels.
Using (10), the combiner output SNR can be described in
a statistically equivalent representation as

L i . L
L
MR = D N Y Wh =Y AV, (11)
=1 k=1 1=1

where the virtual branch variables V;’s are defined by

w
Vidy wi.
k=1 :

Exploiting the fact that the {W), }'s in the KL expansion
are independent zero-mean unity-variance Gaussian r.v.’s,

(12)

5The fact that two Nakagami branches with different fading param-
eters m; and m; can not be completely correlated (i.e., py;y; < 1) is
not a drawback in our statistical representation, and it is just a man-
ifestation of the basic fact that two r.v.’s with different distributions
can not be completely correlated. .
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it can be shown that the V}’s are independent chi-squared
r.v.’s with p; degrees of freedom. Therefore the character-
istic function (c.f.) of the V] is given by

1/2

/2
mew

:d)Vz(jV) s ]E{€+juvl}.= [

III. CANONICAL FORMS
The SEP for specific modulation techniques, namely

MPSK and MQAM, in correlated Nakagami fading was -

derived in [19] by averaging the conditional SEP over the
individual p.d.f. of the virtual branch SNR’s (rather than
averaging over the p.d.f. of the combined output SNR). In
particular, the results derived in [19] showed that the SEP’s
for MPSK and MQAM reception using N-branch MRC
with unequal branch SNR in correlated Nakagami fading
are simply the weighted sum of the single-branch SEP’s.
The striking resemblance between the canonical structures
of SEP for MPSK and MQAM suggests the more profound
result that a canonical structure exists, and that it is the
same structure for all modulation techniques.

A. Canonical Form for p.d.f. of the Combiner Output SNR

The hypothesis that the canonical structure is indepen-
dent of modulation techniques implies that it is the prop-
erty of both the channel and the diversity combiner and not
the property of specific modulation techniques. The most
fundamental statistical quantity describing this property is
the p.d.f. of the combiner output SNR. Therefore, we de-
rive the canonical structure for the p.d.f. of the combiner
output SNR in the following by inverting the c.f. The c.f.
of the combiner output SNR is

1/}7.\1}?(: (]V) =K {e+jV'YMRc} )

Since the physical branches are correlated, the direct use of
the expression for yygrc in terms of physical branch vari-
ables given by (3) requires N-fold integration for the eval-
uation of the c.f. of ymrc in (14). This is alleviated by
expressing ymrc in terms of virtual branch variables using

(11) as

(14)

Yonine (GV) ZIE{ +ivEi 1/\IV1}
L
H {eriavy

‘-—W_-/
£ vy, (Jvii)

(15)

The power of the virtual path technique is apparent by ob-
serving that the expectation operation in the above equa-
tion only requires a single integral, instead of N-fold inte-
gration. Substituting (13) into (15) gives

1/2 wi/2
H[l/Q—]V/\I] '

1ﬁ‘n\mc (16)

It can be shown that the carefully constructed statistical
equivalence of yppe in terms of X with Ky in Section II-B
guarantees that y; is even. Expanding (16) using partial

fraction expansion, the p.d.f. of the combiner output SNR
can be derived as

1 +oc0 ) »
frmre (1) = B Yymre (Jr)e™?7 dv
L pi/2 T
= Z A[k -— [ 1 ! - ] e IV dll,(17)
1=1 k=1 B N v L4
| S S—

Ly(jv)

where the A; ;’s are partial fraction expansion coefficients.
It can be shown that

L /2

f’YMn(: (7) Z Z A k 97('77 2/\ )

=1 k=1

(18)

and g, (v; 5—}\—1, k) is the p.d.f. of the single-branch SNR in
Nakagami fading with parameter pair (k, 2k\;).

The result given in (18) is the p.d.f. of the combiner
output SNR for N-branch MRC in correlated Nakagami
channels. Specifically, the N diversity branches are corre-
lated, where m; and I'; are not necessarily equal among
the branches. The canonical form for the p.d.f. of the com-
biner output SNR is evident from (18): it is simply the
weighted sum of the “elementary p.d.f.’s,” where the ele-
mentary p.d.f.’s are the p.d.f.’s of the smgle—branch SNR
in Nakagami fading with parameter pair (k,2k);). Note
also that the elementary p.d.f. is equivalent to the p.d.f.
of the combiner output SNR in Rayleigh-fading channels
using MRC with k identical branches having equal SNR’s
of 2/\1.

B. Canonical Form for SEP with Arbitrary Modulation
Techniques

In Section I1I-A, we derived the p.d.f. of the combiner
output SNR. Using the canonical structure of the p.d.f. of
the combiner output SNR given in (18), we show in the
following that the canonical structure for SEP exists and
is independent of the specific modulation techniques used.

The SEP for MRC in correlated Nakagami fading can
be obtained by averaging the Pr {e|ymrc} (for any specific
modulation technique) over the p.d.f. of the ymre as

Pe= Evvre {PI‘ {ehMRC}} ) (19)

where Pr{e|vnrc} is the SEP conditioned on the random

variable yyre. Substituting (18) into (19),

+c
Pe = / Pr{e[7} fonue (7) dv
0

Lowi/2

=Y A / Pr {7923 5y b) 1 (20
=1 k=1 0
L p.(k,2k\;)
Recognizing that the integral in (20), denoted by

P, (k.2k)\;), is the average of the conditional SEP s (for

any specific modulation technique) over g.(v; 2/\ k), we
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obtain

2
Apg Po(k,2kN).

~

L
Po=Y" (21)

=1k

]
—

In other words, the SEP (for any specific modulation tech-
nique) for MRC with N branches, where m; and T'; are
not necessarily equal among the branches, in correlated
Nakagami fading is simply the weighted sum of the “ele-
mentary SEP’s” for that modulation technique. The ele-
mentary SEP’s are the SEP for single-branch reception in
Nakagami fading with parameter pair (k,2k)\;), or equiv-
alently the SEP in Rayleigh-fading channels using MRC
with k identical branches having equal SNR’s of 2.

B.1 SEP Calculation Examples

The canonical form for SEP derived in Section III-B can
be used to evaluate the SEP for a variety of modulation
techniques. We illustrate this in the following for MPSK
and MQAM.

For MPSK,

L wi/2

Pempsk = »_ Y Avk Penps(k, 2kN) .
1=1 k=1

(22)

The elementary SEP for single-branch reception of MPSK
in Nakagami fading with parameter pair (m;,T’;) is given
by

ma

1 [® sin?
)= _/ T, [ 2p df,
™ Jo CMPSK;& + sin“ 6

(23)

P mpsk(my,

where cmpsk = sin®(n/M) and © = n(M — 1)/M. Note
that (23) is equivalent to the SEP for reception of MPSK
over Rayleigh-fading channels using MRC with m; identical
branches having equal SNR’s of %, and therefore a closed-

form expression for (23) can be found in [27].
For MQAM,

L /2

P, mqaMm = Z Z Ak Pentqani(my, 2kA;) .
=1 k=1

(24)

The elementary SEP for single-branch reception of MQAM
in Nakagami fading with parameter pair (m;,I'}) is

/2 2 "

1 [7 sin“ @

7 ;/ T § qin? dé
s} CMQAM s + sin“ 6

2 /4 2 ™

1 [~ in8

_ 9 _/ T | ae,(25)
4 7Jo CMQAM_Lm, +sin% 6

where ¢ = 4(1 — ﬁ), and emgaMm = '2775?—_1) Note again
that (25) is equivalent to the SEP for reception of MQAM
over Rayleigh-fading channels using MRC with m identical
branches having equal SNR’s of %‘- and therefore a closed-

form expression for (25) can be found in [28].

Pe mgam(mi,Iy) =

C. Canonical Form for Outage Probability

Similar to the derivation for the canonical structure for
SEP derived in section III-B, the canonical structure for
outage probability is derived in this section using the p.d.f.
of the combiner output SNR given in (18).

The outage probability, Poy(x), is defined.as the prob-
ability that the instantaneous SNR falls below a threshold
z [9]. Mathematically,

Pout(w) =

This can be obtained by direct integration of the p.d.f. of
the combiner output SNR of (18) as

Pr{ymrc < 2} . (26)

Pout(z) = /0 f’*/Mnc('Y) dy

CLow/2

-

£ 1
| atigpRdr @
=1 k=1 0

Let the outage probability for a single branch with p.d.f.
gv(v; 2%\l,k) be denoted by P,y (z;k,2kA;). Recognizing
that the integral in (27) is equal to Poy{z; k, 2k);),

L
out Z

=1

~

2
Ak Pout(z; k, 2kN) .

e

(28)

.
il
-

In other words, the outage probability for MRC with N
branches, where m; and I'; are not necessarily equal among
the branches, in correlated Nakagami fading is simply the
weighted sum of the “elementary outage probabilities.”
The elementary terms are the outage probability of the
single-branch receiver in Nakagami fading with parameter
pair (k.2k);), or equivalently the outage probability of a
k-branch receiver in Rayleigh-fading channels using MRC
with equal SNR’s of 2k),;.

IV. LiMiTING CASES

In this section, we study some limiting cases of the results
obtained in Section III to verify that our results agree with
previously-published results.

A. Single-branch Nakagami channel

Let us first consider the simplest possible case, namely
single-branch reception (without diversity) in Nakagami
fading with (m;,T';). The p.d.f., SEP, and outage probabil-
ity for this case are also the elementary expressions in the
canonical structure. For single-branch reception (N = 1),
K is a 2m; x 2m; diagonal matrix having only one eigen-

value ( = 1) of multiplicity p; = 2m;. The eigenvalue is
AL = —m*— Substituting the appropriate parameters into
(18) results in
my
F+(¥) = g+(7: PTL mi) ., (29)
1
which is simply the Nakagami p.d.f. with (m,.T), as it
should be. Similarly, the SEP for (21) reduces to
Pe = Pe(my,I'), (30)
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where the closed-form expression of the P.(mq,T'1) for bi-
nary frequency shift keying (FSK) is given in [6], for BFSK
and BPSK is given in [7], [12], and for MFSK is given in [8].
Alternatively, expressions for the P.(m;, ;) for MPSK and
MQAM, in the form of a single integral with finite limits
with the integrand involving trigonometric functions that
can be evaluated numerically, are given in [29]. Similarly,
(28) reduces to

Pout(z) =
B. Independent Nakagami Channels
B.1 Case 1: All Equal —71;—:-

Here, we consider MRC with independent Nakagami fad-
ing with parameter pairs (m;, ;) such that %— are equal for
all N branches. Note that this includes the case of m; = m
and I'; = I". In this case, Kx is a 2mN x 2mN diagonal
matrix having only one eigenvalue (L = 1) of multiplicity
u1 = 2mN. The eigenvalue is A\; = % Substituting the
appropriate parameters into (18) results in

f+(7) = g4

which is simply the Nakagami p.d.f. with (Nm, NT') as in
[6]. Similarly, the SEP for (21) reduces to
P, = P.(Nm,NT), (33)

which agrees with the results for BFSK [6], and the results
for BFSK and BPSK given in [12]. Similarly, {28) reduces
to :

out(-'L' mlyr‘l) (31)

(5 0, N ), (52)

‘ Pout(x) =Pout(x;Nm,Nl").
B.2 Case 2: All Distinct %

Here, we consider MRC with independent Nakagami fad-
ing with parameter pairs (m;, ;) such that % are distinct
for all N branches. Note that this includes the case for
equal m; but distinct ;.5 In thls case, Kx has N dis-
tinct eigenvalues given by A\ = oL 27"7-1 l=1,...,N, each
with multiplicity p; = 2m,;. Substituting the appropriate
parameters into (18) results in

(34)

N my

DD Ak 94w

l=1k=1

Sosre (V) = —, k), (35)

which agrees with [6]. Similarly, the SEP for (21) reduces
to

my

N r
ZZ (k. k=),
1=1k=1 my

which agrees with the results for BFSK given in [6]. Simi-
larly, (28) reduces to

(36)

M my

ZZAlk Pout(x k k&)

=1 k=1

(37)

out 1')

SThis case was analyzed in [11] by approximating the sum of the
squares of Nakagami r.v.’s by a single Nakagami r.v. with appropriate
parameters. This approximation becomes exact when the I';’s are all
equal.

C. Identical Nakagami Channels with Correlation

Consider N branch MRC in Nakagami fading, with arbi-
trary correlation where the m;’s and I';’s are equal for all
branches. This includes the two special cases considered
in [12] with two specific correlation models, namely equal
correlation and exponential correlation. In this case, the
{A\i}’s are the L distinct eigenvalues of the block-diagonal
covariance matrix having m identical N x N diagonal blocks
given by

1 p12 ... ;N
r |p2 1 ... p2nN
Kep=ool o+ - |- (38)
PLN P2,N oo 1

The p.d.f., SEP, and outage probability can be obtained
by substituting the eigenvalues into (18), (21), and (28),
respectively. Let {:\l}{il be all of the N eigenvalues of
Ky.. Then the c.f. of the N-branch diversity combiner
output SNR can be shown, using (16), to be

N -m
Yonanc i) = [ [1 - w2k
=1
= |I —ju2A]™™ (39)
where A is an N x N diagonal matrix where the diagonal
components are the elements {\}.” Since Ky, is Her-
mitian symmetric, there exists an unitary matrix E with
EE' = I such that Ky = EAE* [30]. Therefore (39) be-

comes

Yywurc (JV) = iEEt “jU2EAEt[_m

= |I—j2Ky|™" (40)

This agrees with a Model C of [31].

V. CONCLUSIONS

We developed an analytical framework to study the per-
formance of wireless systems using maximal ratio combin-
ing with an arbitrary number of diversity branches in cor-
related fading. We considered coherent detection of digital
signals received over correlated Nakagami fading channels,
where the instantaneous SNR’s of the diversity branches
are not necessarily independent or identically distributed.

We derived closed-form expressions for three perfor-
mance measures of an MRC diversity system: 1) probabil-
ity density function (p.d.f.) of the combiner output SNR;
2) symbol error probability (SEP) with coherent detec-
tion; and 3) outage probability. We obtained a canoni-
cal structure for these performance measures as a weighted
sum of the corresponding expressions for a non-diversity
(single-branch) system with appropriately-defined param-
eters. This result is fundamental: the canonical structure

7In general, the elements of {:\l} are not necessarily distinct and
hence {:\ﬂ{‘;l ) {’\l}lL:l' If the elements of {:\l} are not distinct,
{\i} is a proper subset of {X;} with L < N. When the {\;} are all
distinct, then set equality is achieved, i.e., {A;} = {\/} with L = N.
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depends only on the properties of the channel and diversity
combiner, and not on the specific modulation technique.

Thus, lengthy derivations are no longer needed for sep-
arate cases of wireless scenarios with different numbers of
diversity branches, modulation techniques, and correlation
models, as our results give a simple prescription for com-
puting the parameters of single-branch Nakagami channels,
the weights, and the number of terms used in the sum to
calculate the results. Calculations of SEP for specific mod-
ulation techniques were illustrated through examples. Our
results extend previously-derived results to cover numerous
additional useful cases.
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