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Abstract:

In this paper we compare the performance of the minimum
mean square error (MMSE) and maximum signal to
interference plus noise ratio (MSINR) cost functions in a flat
fading channel with co-channel interference (CCI). We
investigate the reduced rank and full rank weighted sub-space
techniques. ~'We observe that using the reduced rank
approximation technique on MMSE is equivalent to MRC in
a flat fading channel without CCI. For the CCI case we
found the full rank weighted sub-space technique applied to
MSINR  performs  best. Through reduced rank
approximations of the covariance matrices, the signal sub-
space performs well for the MMSE and the noise sub-space
performs well for the MSINR. However, the weighted sub-
space performance was close to the known rank case and
much better than the conventional techniques.

1. Introduction:

The need for improved communications and increased
system capacity is never ending. Wireless system designers
have several options available from choosing a modulation
scheme, adding Forward Error Correction, including spatial
antenna diversity, etc. We will concentrate on increasing the
number of antennas for reception. It is well known that
antenna diversity increases the output SNR, lowering the bit
error rate (BER) and thus producing better performance.
Three techniques available are: Switching/Selection (SS),
Equal Gain (EG) Combining and Maximal Ratio Combining
(MRC).[4] However when CCI is present in the channel the
above mentioned techniques are no longer optimum in
minimizing the BER. The optimum combiner is the Adaptive
Antenna Array (AAA).[10]

As a demonstration vehicle, we chose the IS-136 TDMA
NADC standard. This cellular system uses 7/4-DQPSK at a
bit rate of 48.6 kbps.[5] Our choice of detection technique is

the differential detector.[13] The BER was measured over
10 million bits. The AAA receiver has M antennas. The
received signal vector is represented as

T
X = [xlaxz s"'axM]
where T denotes transpose. The weight vector is defined as
W, sothe AAA output signal is
*
y=w x
where * denotes complex conjugate transpose.
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Our simulation results show in a flat fading channel without
CCI, the MMSE and MSINR based weights have poorer
performance than MRC. Note the degradation with respect
to the ideal weights is due to the sample support problem,
which occurs when the number of weights to be determined
(M) approaches the window size (N). Moreover, when CCI
is present, we show the BER performance of MSINR and
MMSE are approximately equivalent, but much better than
MRC. Further improved performance can be achieved if the
number of CCI’s is known. In practice this is not known so
we use the weighted sub-space technique and achieve
performance very close to the known rank case. Lastly,
reduced rank approximation of the covariance matrices is
investigated for both MSINR and MMSE, and compared to
the full rank weighted sub-space approach.

Section 2 describes the two cost functions and the sub-space
techniques. Section 3 presents BER results for the frequency
flat fading channel. In section 4 we present BER results in
the flat fading with CCI channel. Section 5 presents the
weighted sub-space results, and conclusions are in section 6.

2. Cost Function Description:

In this section we compare the two cost functions used to
derive the array weights.

2.1 MMSE Cost Function:

The MMSE cost function minimizes the MSE between the
array output and desired signal, d. This leads to the
following equation for the antenna weights [9]

A1 A

Womse =Rl @

where R is the received signal covariance matrix and 7, is

the cross correlation vector. We use the sample mean
estimator which gives us the following estimate

A 1 & .
R, =—D x(t+1)x"(t+1,)
N3

and the following estimate of the cross correlation vector

A 1 ud *
T ‘—'ﬁ;é(ﬁﬁ)d (t+1) (4)

We have used N to denote the window size, i.e., the number
of time samples (or symbols) used in the calculation.
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2.2 MSINR Cost Function:

The MSINR cost function maximizes the array output SINR.
This leads to the following equation for the antenna weights

A

_p-l a
Wysive = Rin Ty (5)
where the received signal interference plus noise covariance
matrix is given as (with the variable t omitted)

N *
Rrow =2 2~ )~ ) ©

i=1

where h is an estimate of the desired signal’s channel
response, which we set equal to the cross correlation vector.
With ideal estimation, the array weights for MMSE and
MSINR are equivalent (within a scalar factor) and produce
the same BER performance.

2.3 Reduced Rank and Sub-space Techniques:

In this section we make use of some special properties of the
covariance matrices described above. In particular they are
Hermitian, as such Normal matrices and unitarily
diagonalizable.  Using the Eigen Spectral Decomposition
(ESD) Theorem we can rewrite the covariance matrix as [2]

M <
= > v,y @
i=1

A

where A, ’s are the associated eigenvalues of the matrix, R,
and V,’s are the associated eigenvectors. Note R=Ry,y for
MSINR and R=R,, for MMSE. We know the vector space of
R consists of M linearly independent vectors. We can go one
step further to classify them into sub-spaces: the signal sub-
space and the noise sub-space. Let’s define N; to be the
dimension of the signal sub-space. By signal sub-space we
mean the desired + interference for MMSE and interference
for MSINR. The MMSE weights can thus be rewritten as
N, M
5 1 " 1 « Ja

—vv+ D vy [F, ®

i=1 ﬁ l =N +1 l ’ !

i

Woumse =

Note the eigenvectors for R are the same as those of R.
With ideal estimation, the second summation should

identically equal zero since 7 ¢ is in the signal sub-space.

This leads to the reduced rank approximation to the
covariance matrix. In particular to the MMSE cost function,
we can define the reduced rank sub-space weights by using
only the eigenvectors associated with the largest N;
eigenvalues. The weights are given as

N X
Wommse—ss = Ai vy, .’1, ®
i=1

where N, is equal to P+1 for the MMSE cost function and P
denotes the number of CCIL.

In consideration to the MSINR cost function, we use the
noise sub-space since this is orthogonal to the interference
sub-space and can cancel out the respective interference
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eigenvalues. This technique is the Eigencanceller, [3] whose
weights equal

W ysive-ec = Wnsive-ns =

where N is equal to P for the MSINR cost function and
o) 3 is the noise variance. We can do better in performance

through the use of full rank, signal sub-space techniques. In
particular let’s discuss the MSINR with averaged noise sub-
space, whose weights are given as

N.v
Z——v v +— ZV v,
=t 4

nlN+l

W visivgws avG-ns = r e (D
Here we assumed the number of CCI present are known. A
work around is to use the Weighted Sub-space technique
shown below.

3. Flat Fading without CCI BER Results:

In this section we will represent the received signal as
X=hs+n (12)
where /1 is an Mx1 channel vector, s is the desired signal and

nis an Mx1 noise vector. Each element of the channel

vector is a complex Gaussian random variable, whose
magnitude is Rayleigh distributed and phase is uniformly
distributed from 0 to 2m. The noise is AWGN. We observe
the performance for 3 Doppler spreads, fs= 30Hz, 80Hz and
190Hz. Moreover, we assume the antennas are spaced far
enough apart to obtain independent fading on each branch.

For this channel, we observed the performance of MSINR
and MMSE to be worse than that of MRC. However, if we
knew a priori there was no interference, we can use the
reduced rank approximation techniques on MMSE and
MSINR to obtain equal performance to MRC. Using the
reduced rank approximation technique on the MMSE (Ny=1)
is equivalent to MRC. For the MSINR cost function,
theoretically Ry, is equivalent to Ry, so we have the weight
equation which is equivalent to the MRC method. We can
also use unequal windowing in estimating R.,,. The cross
correlation vector can’t have a large window since the
channel changes during the estimation window. However R,
should be a diagonal matrix since it only contains noise.
Here a larger averaging window is preferred. We can force
all the eigenvalues to equal the noise variance or its estimate.
In fact any constant, say 1, will d1agonahze the matrix to give

Woure = —l:xd (13)

3.1 M=2 & M=5 Performance Discussion:

Here we discuss the BER performance of the AAA with M =
2 & 5, using the MMSE (2) and MMSE-SS (9) with Ng=1.
For all f3, we found the MMSE weights to perform worse
than the MRC for this flat fading channel. However, the
performance of AAA using MMSE-SS is equivalent to the



MRC method. So the reduced rank approximation improved
the performance of the MMSE based solution to that of the
MRC. We observed that the £;=190Hz channel favors N=7,
f3=80 Hz favors N=15 and f;=30 Hz favors N=30 symbols.
Hence it would make sense for the receiver to have a Doppler
estimator to adapt the window size to the channel condition.
At N=4 symbols the performance is fy independent since the
major source of distortion is due to estimation error. For N >
30, there is fy dependency which is due to the channel
changing during the estimation window. Lastly, we see using
the MMSE-SS technique, the performance “flattens” so we
are somewhat less sensitive to the value of N chosen. For
lower Doppler spreads (slowly varying channel) the array
weights can be more accurate since we can use larger
estimation window sizes. The challenge occurs for fast
fading channels which forces us to use the small window
sizes. For M=5, we saw similar behavior as for the M=2
case, for both the full and the reduced rank signal sub-space
methods.

In summary, for the flat fading channel we observed the
performance of MSINR and MMSE to be worse than that of
MRC. However, applying the reduced rank approach
(MMSE-SS) or unequal windowing to MSINR, performance
is similar to MRC.

4. Flat Fading with CCI BER Results:
In this section we will represent the received signal as

F
x=hs+ 2 ks, +n (14)
i=1

where /i is an Mx1 desired signal channel vector, £, is the

i™ Mx1 interfering signal channel vector, s is the desired
signal, s, is the i interfering signal and 7 is an Mx1 noise

vector. Here we assumed P equal power CCI’s in the
channel. The channel vector is a complex Gaussian random
variable, The noise is AWGN. We define signal to
interference plus noise (SINR) as

SNR

P

1+ 3 INR

i=1
As the interference to noise ratio (INR) increases the AAA
performs better than MRC.[6] [10] Below we have set the
INR to equal 10dB.

SINR = s

4.1 M=2 Performance Comparison:

In figure 1 we plot the performance of MSINR and MMSE
with 1 CCI (P=1) for f3=190Hz, using N=15 and N=7
symbols. We notice for N=7 symbols, the AAA can perform
much better than the MRC. Here we see MSINR & MMSE
perform approximately 3dB better than MRC for BER=1E-2.
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4.2 M=5 Performance Comparison:

For P=1, using the MMSE-SS produced an SINR
improvement of approximately 0.3dB at a BER=1E-3. Hence
the reduced rank approximation for R, can lead to
improvement when P is low compared to M. We investigated
the performance of the MMSE, MSINR, MSINR-EC and
MSINR w/AVG-NS for P=l. MSINR  w/AVG-NS
performed the best, followed by MSINR-EC and MSINR.

1.E-01

—O——MMSE/
MSINR
(N=15)

--4--MRC
Theory

e MMSE/,
MSINR
(N=7)

1.E-03

5 10 20
SINR (dB)

Figure 1: MMSE & MSINR Performance with 1 CCL.

We increased P to 3 and the MSINR-EC performed worse
than MSINR. The performance of MSINR-EC is extremely
dependent on P. Hence this reduced rank approximation to
Ry can improve performance when the number of CCI is
small, compared to M. In order to observe the performance
dependency on N we plot figure 2 for the 1 CCI case, for
SINR=2.5dB. The performance improvement over MMSE is
more noticeable at low values of N.

As P increased the performance of the MSINR-EC degraded
to be worse than MMSE. We noticed the MSINR-EC works
well when the dimension of the noise sub-space is greater
than P. Unequal windowing didn’t affect the performance of
MSINR w/AVG-NS. However for MSINR, performance
improves, but is still worse than the sub-space techniques.

We have found 7 symbols for 7, and 15 symbols for R,
gave improved performance, compared to equal windowing.
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Figure 2: MMSE & MSINR BER Results for 1 CCI.

As P increases, the performance of MSINR-NS degrades
more rapidly. Also depending on the number of CCI present,
different values of N improve performance. For MMSE,
slight improvement occurs using the reduced rank technique
with the correct rank estimate. Significant degradation
occurs when this rank estimate is below P+1. For MSINR-
EC, we notice a correct rank estimate improves performance
and an incorrect estimate causes significant degradation in
BER.

Figure 3 shows the BER versus the signal sub-space
dimension (N;) for values of P=1to 4 in (11). Here we fixed
SINR=5dB and N=7 symbols. As expected, the minimum
BER is achieved when the correct dimension of the sub-space

is chosen, Ng=P.- (This figure assumes #h = V- Similar

results were obtained when we set 1 =7, )
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Figure 3: MSINR Full Rank Sub-space Investigation.

BER performance improvement can be obtained through full
rank, sub-space processing. Note that this performance
improvement is achieved by forcing a particular structure to
the covariance matrices. For example, if we correctly choose
the signal sub-space dimension, we have forced the matrix to
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have the proper structure. By this we mean the interference
matrix will have rank P and the noise sub-space eigenvalues
are all set equal to noise variance.

5. Weighted Sub-space (WSS) Performance:

Above we have assumed a priori knowledge of the rank of
the interference covariance matrix. In practice this must be
estimated. We can get around this problem by the weighted
sub-space (WSS) technique. [11] [12] In the WSS technique,
the sub-spaces are weighted according to the eigenvalues.
Let’s further define the eigenvalues as

A, =X +0} (Viel..,M)

where A ; 1s an eigenvalue corresponding to the signal sub-
space, in the absence of noise.- The WSS technique performs

(16)

~

the following function: If /11 is large, we leave it alone

(since it corresponds to large interference), or if /1,. is small
we force it to approach zero (since it corresponds to a very

weak interferer or it is non-existent). We can write the
interference + noise matrix as

Rrov =3 F(E) e

where f(A,) is a non-linear function that behaves as

discussed above. We used the ATAN(x) function, shifted
and appropriately scaled, which we found to be robust over a
wide range of nonlinear functions. Our simulations have
shown this technique works very well (minimal BER
degradation) compared to the known rank case, as shown in
figure 4. Here we see the tremendous benefit of the WSS
technique to overcome the sample support problem.
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Figure 4: WSS Results for 1 CCI, SINR=2.5dB.

The weighted sub-space technique performance with
different number of CCI is shown in figure 5. We see how
well the WSS technique performs compared to the known
rank performance. = We noticed as P increases the
eigencanceller degrades more rapidly than the other



techniques and the sub-space
conventional techniques decreases.

improvement over the
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Figure 5: WSS Performance, SINR=2.5dB, N=7, f;=190Hz.

Figure 6 compares the AAA performance for M=2 and M=5
with 1 CCI. We see the optimum AAA has approximately an
8dB improvement over M=5 MRC for BER=1E-3. Using the
WSS method we are approximately 1.5dB worse than this
optimum known rank case and 2 dB better than the
conventional MSINR weights. Hence this WSS technique
offers tremendous performance improvements.
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1.E-02 y Rin & rxd, M=5)
2. —O0—MSINR (WSS,
o M=5)
1.E-03 — A — MMSE (M=5,
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Figure 6: M=2 & 5 AAA BER Performance Comparison
with 1 CCIL.

6. Conclusions:

For flat fading without CCI, we have shown the conventional
MMSE and MSINR methods are worse than MRC. Use of
the reduced rank improves performance to equal MRC and

therefore these techniques don’t produce any degradation for
this channel condition.

For the CCI case, we showed that MSINR & MMSE are
better than MRC, as expected. We can obtain better
performance than the eigencanceller using MSINR w/AVG-
NS. Use of the signal sub-space for MMSE and the noise
sub-space for MSINR has some limitations as P increases.
Specifically, as P approaches M, the reduced rank techniques
degrade faster than the sub-space techniques. Moreover, for
this large P case the unequal windowing technique on
MSINR produces better results than the reduced rank. The
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channel estimation technique seems to be the dominant cause
of BER degradation. Best performance can be obtained if the
number of CCI is known, but in practice this is unknown.
For this case, the weighted sub-space (WSS) method
performs close to this known rank case and much better than
the conventional methods.
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