SINUSOIDAL MODELING AND PREDICTION OF FAST FADING PROCESSES

Jeng-Kuang Hwang
Dept. of Elec. Eng.
Yuan-Ze Univ.
Chung-Li City
Taiwan 32026
E-mail :eejhwang @saturn.yzu.edu.tw

Abstract

Fast fading is a major difficulty for wircless systems
operating at higher and higher carrier frequencies. As
suggested by the Jakes fading simulation model, fading
processes due to multipath propagation can be, by nature,
modeled in baseband as a combination of multiple
complex superimposed sinusoids. In this paper, starting
with the cbservation of a flat faded and noise corrupted
baseband modulated signal , we apply and modify the
ROOT-MUSIC algorithm to model and further predict
the complex fading process. The modeling/prediction
performance is evaluated by both simulated and real-
world fading data. It is shown that short-term prediction
is feasible, and we conclude that the proposed approach
may find many applications to improve system
performance under fast fading situations.

1. Introduction

It is well known that a principal detrimental factor in
limiting  the wireless  mobile
communication systems is signal fading, in that it is
unknown and imposes multiplicative distortion on the
transmitted signal. An effective technique to tackle this
difficulty is spatial diversity which uses multiple
receiving antennas and employs a certain scheme to
combine the multiple independently-faded received
signals. However, for such a scheme to be successful, it is
often necessary to estimate or track the fading process to
determine the appropriate combiner weights [1]. Under
slow fading conditions, fading estimation is often done by
a windowing and averaging technique. However, because
the fading rate is proportional to the RF frequency, the
fading becomes faster as the carrier frequency is
increased. For such a fast varying fading channel, the
conventional averaging method needs to use a shorter
window length, resulting in degraded performance.
Furthermore, the estimated fading process obtained by
the conventional windowing method also suffers from a
time lag. Without introducing a decision delay of haif the
window size, the lag will also lead to some performance
degradation. Aware of the above problems, we thus
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altempt 1o siudy the problem of fading modeling for the
purpose of fading prediction, which means the prediction
of the future fading process (envelope and phase) based
on noisy observations of the faded modulated signal.

The problem of fading prediction has been studied by
[2] who assumed that the fading process could be
modeled by a small number of sinusoids. In investigating
the statistical properties of fading, researchers often
began with a model of multiple superimposed sinusoids
which correspond to many reflected rays with different
Doppler frequency offsets, attenuations, and phases. This
physical conception leads to a sinusoidal model with its
parameters regarded as random variables. Based on this
idea, Jakes proposed a widely adopted Rayleigh fading
model to generate artificial fading process for system
simulations [3]. In fact, in both LOS and non-LOS
environments, spectral analysis of real-world fading data
sirongly supports the conjecture that the complex
baseband fading process mainly consists of a small
number of sinusoids. However, we are unaware of any
studies of fading prediction using real-world data
generated using rapidly-moving mobiles. All of the above
facts motivate us to this study. In modeling the fading as a
superimposed sinusoidal process, it may be reasonable to
assume that the sinusoidal parameters can be treated as
unknown consiants during a short enough interval. Thus,
we speculate that the fading process is in fact a
deterministic sinusoidal process with time-varying
parameters. With such view, we consider the problem of
fading modeling and subsequent fading prediction. I is
easy to see that if the receiver is equipped with such a
capability, then significant performance improvement
may be possible [2].

Now we should point cut that Makov-type models
have also long been used for studying the statistical
properties of fading processes [3,4,5], such as level
crossing rate, etc. For such a model to be applied io fading
prediction, one naturally first consider the Kalman
filtering techniques [1, Ch.14]. However, sitice the whole
state-space signal model entails an



unpredictable process noise and a measurement noise, it
is thus feasible to predict only very few sieps ahead.
Besides, this model has ne direct link to the physical
origin that gives rise to the fading phenomenon. So we
consider it not appropriate for fading prediction.

The paper is organized as follows. In Sec. 2 we state
the signal model and problem formulation. In Sec. 3, the
sinusoidal modeling for fading process is presented by
applying the ROOT-MUSIC frequency estimation
methed [6]. In Sec.4, the fading prediction probiem,
performance measures, and schemes for improving the
prediction performance are proposed. Then the method is
evaluated by using both computer generated data and
real-world measured data in Sec. 5, and some practical
considerations are discussed. Finally, conclusions and
future work are outlined in Sec. 6.

2. Problem Formulation and Pre-filtering

A, Signal Model and Problem Statement
Consider a complex baseband signal as follows

x(1y= D, a,p(t ~kT) (M

where &, is the transmitted symbol with lg,| =1, and p(z) is
the baseband shaping. If x(zj is passing through a flat
fading channel, the complex envelope of the received
signal can then be written as '
¥(t) = fit) xe} + w(t) @)

where f{#) is the multiplicative fading process of interest,
and w(?) is additive white Gaussian noise. According to
{31, we assume that the complex fading process consists
of multiple complex sinusoids as

=3, Acieme &)
i=1

which can be interpreted as P incident rays with different
path attenuations A; , Doppler shifts f;, and phase shifts &,
i=1,..., P. In addition, the maximum possible Doppler
shift (fading rate) can be assumed known, since it is given
by
Fomes = Fo Vo ¢ (H12) )

where f; is the carrier frequency, Vu, is the maximum
vehicle speed, and ¢ is the speed of light. For example,
with f. = 1.9 GHz and v,,, = 6@ mph, fp,., is set to about
180 Hez.

We assume that the symbol rate is much greater than
the fading rate and the overall pulse shaping satisfies the
zero ISI condition at the symbol sampling points. So after
receive filtering and sampling at the symbol rate R= I/T,
the resulting discrete-time samples are given by

W) beoir = (k) = fik) @ + wik) &)
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Let us assume that the receiver has correctly detected the
symbol a;. Then by multiplying the received sample wk)
by @, =a;, the modulation can be removed, yielding

k) = y(k} @, " =ftk) + wik) k=012, ..,N (6)
where w'(k) is still an additive white Gaussian noise with
the same variance as w{k). We also normalize the
sinusoidal frequencies for the discrete-time data with
respect to the symbol rate (sampling frequency), and
denote these frequencies by ]—rl =fi/R=fT.

With such a record of noisy fading data, we now state
the problem as follows :
Given the data record {z(k), k=0.., N} and maximum
Doppler frequency fpmg »
(1) Estimate the parameters {A, [, 0,} in the flat fading
model.
(2) Predict the fading process fik) for k = N+1,..., N+L

B. Low-Pass Pre-filtering

Since the normalized maximum frequency
component of the discrete-time samples fk) is no more
than f5,,,. T, we can first filter the out-of-band noise in
z(k). This leads to an increase in fading power-to-noise
power ratio (FNR). In fact, the conventional averaging
method can be regarded as a loW—pass filter (LPF) with an
impulse response of a rectangular window. In [7] it has
been shown that the selection of window length and
window type has a influence on the overall performance.
So here we will use the formal filter design technique for
low pass pre-filtering. First, the LPF should be linear
phase since it is to pass f{k) without distortion. Thus we
use an FIR filter rather than an IIR filter. Then, among
the various FIR filters, we consider the Parks-McClellan
optimal equiripple filter which satisfies the following
specifications :

Passband edge : fpuu ]

Stopband edge : fomuT + fre

transition band)

Maximum passband ripple : p dB (should be small)

Minimum stopband attenuation : D dB
The transfer function of this filter can be written as

L
B(z)= 2.b()z™ - %)

i=D

(fTE is the width of

Suppose that an ideal LPF is used. Then the improvement
factor in FNR by using the ideal LPF is 10 1og (R / fomar)-
For a practical FIR LPF, the improvement factor is about
10 dB, mainly depending on the filter order L.

‘When applying the LPF to the datarecord, two things
should be noted, First, the output noise component v(k) -
becomes a colored moving average (MA) noise with
known autocorrelation function :




Rv(lj = allib(i)b(i.., D for Ul<Land zero elsewhere (8)
i=0

that is assumed known. Second, there exists a group delay
(mmisalignment) of L/2 between the true fading process f{k)
and the LPF output gfk). Without time shifting, this can
lead to a combiner weight bias and can therefore degrade
the BER performance [7], especially in fast fading
situations.

‘We present the sinusoidal medeling and prediction
method below.

3. Sinnsoidal Modeling for Fading Processes

The present problem is similar to the harmonic
retrieval problem that has been extensively discussed over
the past 20 years. Thus there are numerous existing
methods [8] to solve this problem. Basically, they can be
classified into two categories : FFT-based methods and
model-based high-resolution methods. Since the fading
rate is much less than the symbol rate, the frequencies of
the component sinusoids are closely spaced around zero.
Thus we resort to the high resolution methods. In the
literature, we note that the ROOT-MUSIC method [6]
matches our needs and is compuiationally moderate. For
this reason, we consider it in this paper. Below we give a
brief introduction of it.

As a variant of the well-known MUSIC method,
ROOT-MUSIC does not do spectral peak finding. First, a
K-by-K sample correlation matrix is calculated as

R=G*G" 9
where G is the forward-backward data matrix constructed
from the LPF output data g(k). Assuming that the number
of sinusecids is P ( P < K-I), then the noise subspace is
obtained as

span{¥Vyol, Vo= [V Vpa ..o ¥l (10)
where V, consists of the K-P smallest eigenvectors of R.
Let Q=V,V," and

K-i K—i .
c; =2Qk,k+i and ¢, = ZQW,J‘ fori=012,... K1
k=1 k=1

(1)

We note thal ¢;” = ¢;, and form the polynomial equation
HC g2 Ttz e 2N e, Y =0
(12)

Solving this equation gives 2(K-1)roots having reciprocal
symmetry with respect to the unit circle. Denotc the P
roots that are outside and also nearest to the unit circle as

C—K+l K+2

2. ... Zpr. Then the frequency estimates for f;

(normalized with respect to R) are given by

fi=arg(z)/ 2 i=12,..P (13)
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where arg(z;) denotes the principal argument (in radians})
of z;. It should be pointed out here that the method needs
to know the number of sinusoids a priori. However, in
next Section we will use a root location constraint to
avoid this problem.

Once the frequency estimates have been obtained, the
complex amplitudes £; = A¢/% can be found by a linear
least-square (L.S) fit of the following matrix-vector
equation

AE:[alag...ap]E=g (14)
where a; = [i¢/2% v--eﬁ"«’a""]T for i=1,...,P, E=[E ...
E;]" is the complex amplitude vectar to be found, and g =
[2(0) g(1) ... g(N)]* . The LS solution of (14) is given by
E=A"g, where A’=(A"AY'A" is the pseudo inverse of
A, In this way, the parametric sinusoidal model for the
fading process is obtained.

4. Fading Prediction

Using the fading model determined by the above
method, fading prediction can be done. The overall
concept for fading modeling/prediction is illustrated in
Figl. However, the parameter estimation or model fitting
suffers from error due to the presence of noise, and
nonstationarity due to the time-varying sinusoidal
parameters with real-world fading. Below we consider
this issue.

A. Performance measures for fading prediction
1et the predicted (extrapolated) fading process be
denoted by F¢x) for k> N. When the true fading f{k) is
knowm, as in the computer simulation case, then the
fading prediction error is
ek)= f (k)= f(k) k>N (15)
On the other hand, {or the real-world measured data case,
the (rue fading is not known exactly. Thus we use the LP
filtered fading process g(k) instead of f{k), and define the
prediction error as
e, (k)= g(k)~ f (k) k>N (16)
Now, for the computer simulation case, assume
there are M independent (Monte-Carlo) experiments
under the same fading conditions, and denote the error for
the i-th experiment as e;{k). We adopt the normalized
mean square error (NMSE) as a performance measure,
i.e.

L o
M5 |e’( )l k>N

1 2
w22 )

NMSE (k) = an



where the denominator represents the average power of
the simulated fading process.

Since the complex fading process can be divided into
an envelope fading and a phase fading process, we can
similarly define two performance measures for the fading
envelope

1 & .
NRMSE (k) = ‘jM %‘f @ (k)l)z (18)
i Z2
and for the fading phase .
1 & -
RMSE, (k) = Jﬁgm, (- Awf 09

where /f,(ky denotes the phase of f(k), and is in the

range of -180° to 180°. In (19), m,(8)is a phase correction
function used for subtracting or adding 360° when the
phase error is larger than 180° or less than 1807
respectively. That is,

6+360° if @<—180°
m,(0)=16-360° if 0>+180" 20
g otherwise

B. Sensitivity of prediction performance to estimation
error

Consider the case of a single complex sinusoid as
follows

f(k):Aiej(zd’“Gi) = A'_ej?.eﬂ’?;-;" =Eiej21¥_i% (21)

Note that f{k) is linear in the complex amplitude E,, but is
nonlinear in the frequency f,. We have

af (k) o (k)

of; JF®)
Thus a'small error in the frequency estimate can result in
an unbounded change in f{k) with time. This is also true
for the multiple sinusoids case. Thus, fading prediction
performance is quite sensitive to frequency error,
becoming less accurate for longer prediction.

= 2| ()] = 2k 22

C. Performance improvements

Because of the above problem, we consider the following
modifications of the ROOT-MUSIC method to enhance
its performance for fading prediction.

1. Roots location constraint

Since the fading process can be described as a very
narrowband LP process consisting of multiple sinusoids,
the frequencies of these sinusoids will be closely clustered
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in the neighborhood of O Hz. Furthermore, the maximal
possible sinusoidal frequency can be set to the maximum
Doppler frequency, fom... The above a priori information
corresponds to a constraini on the permissible location of
the candidate roots obtained by ROOT-MUSIC. More
specifically, denote the roots that are outside the umit
circle as zj, ..., 2x;- Then we use a root discrimination
rule to select the admissible roots as follows:

z; Is admissible if {IE'(’;LZ"_),I < foomT=€1 AND
T
{lz|-1<8} fori=1,... K1 (23)
where the second condition is used to exclude some
spurious roots which are too far from the unit circle. In
this way, we also obtain the number of modeling
sinusoids from the data.

2. Control-point constraint

This constraint ensures that the estimated fading process
coincides with the LP filtered fading data at some selected
control points. Such poinis may be boundary points, level
crossing points, peak points, etc, depending on the
purpose and situation. Since the frequency estimation
method is highly nonlinear, this constraint is difficult to
embed in the frequency estimation method. However, it
can be incorporated into the linear LS fitting eq.(14) as a
linear comstraint. Let’s formulate this constrained LS
problem as follows :

min [AE - g (24)

subject to CE =d

where A is a known matrix constructed from the
frequency estimates, and the number of rows of C denotes
the number of control points. Assume there are L control
points, and denote the indices of control points as cy,...c.
Then the i-th row of C is equal to the ¢-th row of A, and
the same rule holds between the two column vectors d and
s '
To solve the above problem, we use the method of
Lagrange multipliers, which yields the solution as

follows : .
E = (A"A)'(A%g - 0:5 CFA) (25)

where the Lagrange multiplier vector A =[A; .... Arl Tis
given by '

A = [CAPAYICHT 2C(ARA) AN - 2d] . (26)
5. Experiments and Performance Evaluation

A. Results based on computer generated data



First, we test the short-term prediction performance of
the proposed method by using the Jakes simulated
Rayleigh fading process. Some important parameter
settings in this scenario are as follows :
® fading rate : fp,,., =180 and 250 Hz
No. of sinusoids in Jakes model : P = §

Fading process power : Pr=1
Modulation format : QPSK with g, € {iii JL}
2 2

Sampling rate : 48.6k samples/sec
SNR: 10, 15, 20, 25 dB
LPF: 28" order equiripple FIR filter
No. of modeling points by ROOT-MUSIC : N+1 =20
Dimension of correlation matrix R : K= 10
Roots location constraint for ROOT-MUSIC :

£=1.2 fpma,T and & =0.1
Control point constraint for LS fitting : ending point
of the modeling interval
® Monte-Carlo runs : M = 500 for each SNR
The simulation results are shown in Fig. 2 and 3, which
show the NMSE; NRMSE¢, and RMSEp. The fluctuation
in the RMSEp curves is due to some Monte-Carlo trials
that give large phase errors when the fading envelope is
very small. Except for this situation, it is seen that with
only 20 modeling points, shori-term prediction of the
next 10 points is very good, 1.¢., with an NRMSE; under
0.1 and RMSEp less than 10 degrees.

B. Results based on real-world data

Here, we used two real-world IS-136 data sets
collected during a Lucent/AT&T field trial [9]. For the
data coliection, after down conversion, the received 1/Q
baseband data were first filtered by a squared root
raised-cosine filter with a roll-off factor of .35, and then
sampled at 48.6 kHz. With the knowledge of the correct
symbol sequence, we removed the modulation from the
data. Each of the data sets then consisted of 45 time slots,
which amounts to a total of 45x168= 7560 sample points
(0.156 scconds).

We converted the measured fading daia into
MATLAB data format and applied the same LPF to the
data sets as in the simulated case. We then applied the
aforementioned fading modeling and prediction method
to the preprocessed real-world fading data. The results
arc shown in Fig4. As can be seen, the short-term
prediction error is lower for the real-data case than for the
simulated case. Although the fading rate is slightly lower
than that in the simulated case (= 150 Hz), this is mainly
due to fewer strong sinusoids than in the simulated case
(with 8 sinusoids). However, we also observed that long-
term prediction for the real-world data can be
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significantly worse than that with computer simulated
fading data, This is due to the non-stationarity of the
real-world data.

6. Concluding Remarks

We have studied the problem of sinusoidal modeling
and prediction of fast fading processes. Some promising
results have been presented, showing good short-term
prediction. However, this study is by no means
exhaustive, but is a preliminary effort. Many questions
need to be answered in the future. We will continue to
work on more real-world data, attempt to find other
methods with better performance, and examine the
potential for applying this technique in practical
applications.
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