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Optimum Space-Time Processors with
Dispersive Interference: Unified Analysis
and Required Filter Span

Sirikiat Lek Ariyavisitakul, Senior Member, IEEEJack H. WintersFellow, IEEE,and Inkyu Lee Member, IEEE

Abstract—In this paper, we consider optimum space-time DFE and MLSE, these filter spans determine the required
equalizers with unknown dispersive interference, consisting of a complexity of near-optimum S-T processors.
linear equalizer that both spatially and temporally whitens the In this paper, we first present a unified analysis of the

interference and noise, followed by a decision-feedback equalizer fi infinite-| th S-T idering th
or maximum-likelihood sequence estimator. We first present a optimum infinite-leng -1 processor, considering three re-

unified analysis of the optimum space—time equalizer, and then C€iver types: 1) MMSE linear equalizer (LE); 2) MMSE-DFE;
show that, for typical fading channels with a given signal-to-noise and 3) MLSE. The unified analysis includes both previously
ratio (SNR), near-optimum performance can be achieved with published results [12], [17]-[19] and additional new material.
a finite-length equalizer. Expressions are given for the required The objective here is to provide a consistent and comprehen-

filter span as a function of the dispersion length, number of . . .
cochannel interferers. number of antennas. and SNR. which SiV€ framework for expressing all these results in a form that

are useful in the design of practical near-optimum space—time IS descriptive of the functions and properties of individual

equalizers. filter elements. We then present filter length analyzes for all
Index Terms—Equalization, interference suppression, multi- three rece|ver_s by analyzmg tbaetransform expressions. We
path channels, space—time processing. show that, with fading channels, the filter spans of these

receivers can be truncated such that the average effect of
the truncation is small compared to the effect of thermal
noise. We then determine the required filter span to achieve
N WIRELESS communication systems, cochannel interfemear-optimum receiver performance. These expressions for the
ence (CCIl) and intersymbol interference (ISI) are majoequired filter span as a function of the dispersion length,
impairments that limit the capacity and data rate. These prabimber of cochannel interferers, and SNR are useful in the
lems can be mitigated by spatial-temporal (S-T) processirdgsign of practical near-optimum space—time equalizers. Using
i.e., temporal equalization with multiple antennas [1]-[11]. computer simulation, we study the effect of thermal noise on
In typical wireless systems where the cochannel interferdte required filter span for specific fading channels.
are unknown at the receiver, optimum S-T equalizers, eitherln Section Il, the system model and notation is defined. The
in a minimum mean square error (MMSE) or maximununified analysis is presented in Section Ill, and in Section IV
signal-to-interference-plus-noise ratio (SINR) sense, consike finite filter span analysis is presented. Section V shows
of a whitening filter, i.e., an equalizer that whitens the CQiumerical results. A summary and conclusions are given in
both spatially and temporally, followed by a decision-feedbacection VI.
equalizer (DFE) or maximum-likelihood sequence estimator
(MLSE) [12].
However, under some channel conditions with dispersive
CCl, the whitening filter requires an infinite span to achieve We consider a system whetde+ 1 cochannel signals are
near-optimum performance, even with reasonable signal-teansmitted over independently fading multipath channels to
noise ratios (SNR’s). For typical fading channels, though, suéh M-branch diversity receiver. The time-domain complex
channel conditions occur only occasionally, and the requird@seband expression of the received signal oryjtih@ntenna
filter span for near-optimum performance is finite in mods
cases. Since the filter span, specifically both the causal and I o
anticausal portions, determines the required memory of the i) = Z Z by (t — nT) + 1y () 1)

I. INTRODUCTION

Il. SYSTEM MODEL
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Fig. 1. A space-time DFE receiver. Fig. 2. A space-time MLSE receiver.

distributed complex variables with zero mean and unit symbol Our analysis also includes the use fransforms. The:-

energy and are uncorrelated between sources. transform of asampled sequence of a continuous-time function
The frequency-domain expression of the above receivgd) is G(z) = a Srgrz~¥, whereg, = T - g(kT) [we multiply

signal is g(kT) by T so that{g,} and ¢g(¢t) have the same average
L energy per symbol interval]. The relation betweetransform
Z Xi(f £ +N;(H) ) and Fourier transform is given by the following using the
prd Poisson sum formula [13]:

where R;(f), X;(f), H;;(f), and N;(f) are the Fourier . . s m

transforms ofr; (), {z,i}, hij(t), and n;(t), respectively. G(e*mIT) Z gre T = Z G(f_ _)

Since the data have unit symbol ene§j| X;(f)|]> = 1 for h=—oo m=Tee

|f| < 1/(2T) where E[-] denotes expectation. The noise at (5)

each antenna has two-sided power spectrum defgjty where G(f) is the Fourier transform o§(t), andj = v/—T.
The general space—time receiver using a DFE is shown |n n
It is easy to show that

Fig. 1 (an LE receiver model can be obtained by setting the
feedback filter response to zero). It consists of a linear feed- 1/2T 1  dx
forward filter, W,(f), j =0, 1, ---, M —1, on each branch, a T/ G(f)df =

. . . —(1/2T) 27TJ z
combiner, symbol-rate sampler, slicer, and synchronous linear

feedback filter B(f). The feedforward filters{WW;(f)} a A oo . .
shown as continuous-time filters, but they can be implement @ereG’ F) = 2o GUf = (m/T)) is the Fourier trans-

in practice using fractionally-spaced tapped delay lines. T @m of the sequencggy ;. The contour of the integration on

input to the feedback filter is the decided ddta,o} for the the right side of (6) is the unit circle. For convenience, we omit
desired source. We assume correct decisihs = ) the tilde sign from ourz-transform notation throughout the
throughout this study. " rest of this paper, e.gG(z) will be written simply asG(z).

The input to the slicer (i.e., the space—time processor Outpﬁgrthermore 'fG(f? is the Fourier t-ransform of a symbol—
is denoted by sequendg,, }, with its Fourier transformy’( f ced sequence (instead of a continuous-time function), then

given by

(6)

/
T/1 Y oenar=2L o ® 7)

M-1 oo —(1/21) 27j z

=3 3 wi(r- 2R (- ) - BUOYXo(h).

J=0 m=-co 1
®3)
The summation with respect te in the above equation is a A Optimum Filter Expressions for DFE and LE Receivers
result of spectrum folding due to symbol-rate sampling. The MMSE solution for the feedforward filter§iV;(f)}
Based on the MMSE criterion, the filters are optimized bwith unconstrained length can be derived by using (2)—(4) and
minimizing the mean square error (MSE) setting the derivative§de/OW;(f — (m/T))} to zero. This
yields

1/2T
= Ellun = onol] = T/(1/2T) B () = Xo(DF1 4 W = [Rs + Ryy] 7 Hg(1 + B(f)) (8)

. UNIFIED INFINITE-LENGTH THEORY

4) where

Fig. 2 shows a space—time receiver using an MLSE. Here, A J J
the goal of optimization is to maximize the signal power = [WO <f— )"'WM—1<f— )
(without suppressing ISI) to CCI plus noise power ratio, while

T
whitening the CCI and noise components of the input} Wo <f+ _> ---WM_1<f+ _ﬂ (9)
to the MLSE. T
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A {Ho(f— i) CH 1<f— i) The optimum feedback filtetB(f) can be determined
! ! T SR T through spectrum factorization. Substituting (17) into (3),
J J\1¥ and using (4) and (7), we obtain
Hio <f+ T) o Hi <f+ T)} (10) VA B
_r L+ BUIP
A g7 €= f (18)
Rs = H{H] (11) —qery 1+T()
L 1 [ (1+B)1+ B (=) dz
A " -
Ry = z_:l HH} + NoL (12) 2mj 7{ 1+T(z) z 49

whereB(z) andI'(z) are thez-transform equivalents aB( f)

Rs is the correlation matrix of the desired sign&;+n andr(f). Using spectral factorization theory [19],+ I'(f)
is the correlation matrix of the interference plus noife, 541 + I'(%) can be written as

is the identity matrix, and the superscriptsand 7' denote

complex conjugate and transpose, respectively. We assume L+T(f) = SolG(H)I%;

that the desired and CCI sources are strictly band limited 1+0D(z) zsog(z)G*(zfl) (20)
to f = +£J'/(2T) (J' is a positive integer), and therefore

J = (J'—=1)/2whenJ’ is odd, and/ = J’/2whenJ’ is even Where the constans, is given by

(e.g.,J’ =1 andJ = 0 when there is no excess bandwidth). S = MHT() 1)
Note in (9) and (10) that excess bandwidth provides additional

diversity which can be exploited when there is sufficierdnd

transmit power outside the Nyquist band, e.g., in a spread 1/2T
spectrum system [14] (or see also [17]). () £ T/ [1df (22)
Using the matrix inversion lemma [12, Appendix D], it can —(1/2T)
be shown that and G(z) is canonica] meaning that it icausal(g; = 0 for
R;iNHS k < 0), monic(go = 1), and minimum phaséall of its poles

[Rs+Rpyn] 'HE = (13) are inside the unit circle, and all of its zeros are on or inside

T —1 e
1+Hp Ry vHp the unit circle).

Therefore, (8) becomes Using the Schwarz inequality, it can be shown that the MSE
T in (18) is minimized when
- UIB _yp(). 4
= TYHIR L H; : L+ B(f)=G(f); 1+B(z)=Gk). (29
Furthermore, we can define the signal-to-interference-plLéngtitUting (20)~(23) into (17) and (18), we obtain

. . : 1
noise power density ratib(f) at frequencyf as Wors =R7iNH3 d (24)
WIRsW
N"f)= ———"— (15) and
WiRi v W L _ - masr)
. . EDFE =5~ = ¢€ . (25)
where the superscriptt denotes conjugate transpose So

(W'RsW is the output signal power density, and Using (16), (20), and (24), the CCI plus noise power density
WiR, v W is the output interference-plus-noise density ait frequencyf is
frequencyf). Substituting (14) into (15) yields

HIR, WHY ()
1 e WIRyW = 2 V0 . (26
I(f) = Hy Ry, v H. (16) N SLGHE ~ sa+ry %®
Thus, we can rewrite the optimum feedforward filter solutioNote that ad’(f) — oo for |f| < 1/(2T), the CCI plus noise
as power density becomes a constdnitS, over f. Under this
) 1+ B(f) condition, we can regartl/ SoG*(f) in (24) [or1+ B(f)/1+
W =R vHj T T (17) T(f) in (17)] as a post-whitening filter.

As will be relevant later, we can write+ B(z) also as
Equation (17) gives the form of the MMSE solution, well
knO\?vn in arfay)pgr]ocessing [12] (except for the consideration 1+ B(z) = C[1+I'(2)] (27)
of spectrum folding and feedback filtering). This equatiofhere C[] denotes canonical factor. The corresponding
indicates that the optimum feedforward filter consists of ggurier transform is given as
space—time fiIteR;j ~HE, which performs spatial prewhiten-
ing (RL%\2 is the whitening filter of CCl and noise) and 1+B(f) = CL+ L] (28)

filter (1 + B(f))/(1 + I'(f)), which can be regarded as a

1+ B()), noe n g ORI
post-whitening filter under some zero-forcing condition, as Wpen = R7 CHS 22 T -\ (29)
described below. PEE T TN T T
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Fig. 3. An equivalent model of the space-time DFE receiver in Fig. 1.

The optimum LE is obtained by setting(f) to zero in whereP is an(L + 1) x (L + 1) correlation matrix whose

(17) and (18) (a, b)th elementp,,; is given by
1 M-1 (a9}
Wig =R H) ——— 30 - (r_-™\gr(r_T
we =Ry 1 (30) TS Ha](f T)Hbj(f T). (34)
j=0 m=—oc

and Furthermore, we can write

erm = <%F(f)> (31) Do(f) = VIPTU (35)

where U = [1,0, ---, 0] is a column vector with, + 1
B. An Alternative Solution for DFE and LE Receivers rows, and
. . . . . . L
The optimum space—time filter solution in (17) is based on 2t

a general model which does not make any prior assumptions ; IDi(f)I = VIPIPV. (36)

regarding the filter structure. Without loss of optimality, an ) o

analytical receiver model suggested by many in the literatureh® MSE for this receiver is given by

(e.g., [15]-[18]) assumes the use of a bank of matched € = €151 + €ccr + Enoise (37)
filters {H;(f)}, each corresponding to the signal souice

on diversity branchj, which, after diversity combining, is Where

followed by a bank of7-spaced transversal filterRs/;(f)}, eist = (| Do(f) — (1+ B(f)?) (38)
each corresponding to the signal souicésee Fig. 3). This L
analytical model leads to a different form of solutions which caor = <Z |D7‘,(f)|2> (39)
are important to our filter length analysis. The following i1

derivation is similar to the LE receiver derivation in [18], butand

here we also provide. the solution for the DFE. . enoise = (NoVIPV) = (NoVIPTV). (40)
In Fig. 3, the Fourier transform of the input to the slicer
can be written as Using (35) and (36), the MSE becomes
L e =(VIPTPV 4 Ny VPV + |1+ B(f)?
Y(f) = DiHXi(f) +R(f) = B(HXo(f)  (32) — 2Re[(1 + B*(f))VIPTU)). (41)
:=0

The MMSE solution for V is obtained by solving
where Do(f) and D;(f) are the overall channel and feedy¢/gv;(f)) = 0 for i = 0 to L. We then obtain
forward filter responses for the desired signal and ditie

interference, andi(f) is the noise at the combined output V = (P + NoD)7'U(L + B(f)). (42)

of the feedforward filters. LeD = [Do(f) --- Dr(HI" It can be shown that this receiver achieves the same MMSE
andV = [Vo(f) --- Vi(/)]". We then have the following a5 (25) (or (31) in the case of an LE receiver) and that
relationship: 1 1

D =PV (33) 1) = No UT(P + NoD)~'U’

(43)
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Fig. 4. An equivalent model of the space-time MLSE receiver in Fig. 2. where the overall filter respon$® is given by

Again, 1 + B(z) is the canonical factor ofl + I'(z). W =WU(f) = R;iNH(’S Cg(f)]. (53)
Accordingly, we can rewrite (42) as (f)
Vors = (P + NoD)"YUC[L + I'(f)]. (44) Comparing (53) to (29), we find that
i 1+T(f) crUl
For an LE receiver = . .
WhniLse = Wpre i+t T (54)
Vig = (P + Ny)~'U. (45)

This relationship is extendable to the case where we use the
analytical feedforward filter model in Fig. 3 to represent the

C. Optimum Linear Filtering for MLSE front-end filter of the MLSE receiver. Thus, we can also write
Fig. 4 shows an equivalent model of the MLSE receiver in
1+T(f) C(l

Fig. 2. The front-end filters are now represented by spatial

filters {W}(f)}, which maximize SINR of their combined Vawse = Vore - CIL+IL(f)] I (55)
output, followed by a post-whitening filte®(f). Let W’
denote the vector of Wi(f)} similar to (9). The signal-to- Accordingly
interference-plus-noise power density rafi¢f) is then [cf.
15 _ Cclr
(15)] Vyise = (P4 NoI)7'U(1 +T(f)) é(%)]. (56)
W RsW
L(f) = s (46)
W/iR v W In (54), whenI'(f) > 1 such thatl + I'(f) =~ ['(f), then

) . . . , Wurise & Wprg, i.€., the optimum front-end filter for an
The optimumW is obtained by solvinddL'(f)/0Wj(f)) =  MLSE receiver is equivalent to the optimum feedforward filter
0, forj =0,1,.--, M —1; this gives the relationship of a DFE receiver. This is usually the case when there is no
CCI and the input SNR is sufficiently high [20]. However, it
is generally not true in the presence of strong CClI’s.
Also, using (53) and (56), it can be shown that

RsW' = T(f)R; .y W' 47)

The maximum[I'(f) is, therefore, given by the maximum
eigenvalue ofR;jNRS. Let W, be the eigenvector cor-

responding to this maximum eigenvalue, and substitie—=
W, into (46). We obtain

HZ W = Do(f) = C[L(f)]- (57)

Thus, the desired signal at the output of the front-end filter

;pt — /j(f)RI_iNHE (48) has a canonical_impulse response; this i_s the k_nown desired
property of the input to an MLSE [21] (in addition to the
where noise being white).
W, R nW!
_ opt +N opt
A = W, H ) (49) IV. FILTER LENGTH ANALYSIS

) . Our filter length analysis is based on counting the number
Equation (48) has the same form as (17). As a result, we obtg{ ;o105 and poles in the-transform expression of the

the same expression fai( /) as (16). By factorind’(f) 8 optimum space—time filter. For all three receivers (LE, DFE,
and MLSE), there are two forms of optimum filter solutions:

L(f) = SilICL(H]? 50
) el (50) 1) one based on the general model (with a linear filter on
we can find a post-whitening filter each branch); _ _
2) one based on the analytical model (with a bank of
W(f) = CII'(f)] (51) matched filters on each branch, followed by common

filters).

BT
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The filter length determined by each solution is valid unddrhus, we obtain

different assumptions. The filter length based on the general

model is valid whenM < L + 1, i.e., when the number of vV — [Qoo Qo1 --- Qoz]*
interferers is equal to or greater than the order of diversity due (1Q1/ClIQID - ClQoo]

to multiple antennas and excess bandwidth for convenience,

we write the overall order of diversity as M, instead &f,. Note that the common filter for the desired signal is
The filter length based on the analytical model is valid when

M > L+ 1. The reason for these different conditions will Vo(z) = M_ (64)
become apparent later. Ql/CllQll

Since the general analytical approach for determining tq%us this filter is anticausal (cf. [17])

filter length is the same for both solution forms, we only Wi f hot i (63). Defini
provide details for one of them below. We choose to work € Now focus on each term in (63). Defining a per-
utation o as a one-to-one mapping: (0,1, ---, L) —

on the analytical model case because it is slightly mof@ . :
complicated than the other case, and because the condifiy 1> > oz), the determinant of is [22]
under which it is valid (the order of diversity exceeding the
number of dominant interferers) is where the most interference Q| = Z sen(o)qos, Qioy v QLoy (65)
suppression is achieved, i.e., an array with antennas can 7
null up to M — 1 interferers [23].
We begin by working on the MMSE solution for the DF
receiver. Thez-transform equivalent of (42) is

(63)

where sgfiv) = +1 or —1 depending on whether the number
Eof exchanges in permutatiom is even or odd, and the
summation is taken over allL + 1)! permutationss. Note

V =(P 4+ No)7'U(1 + B(»)) that the product of two polynomials of orderandb results
A in a polynomial of ordef + b, while the sum of them gives
QU0+ B(z) (°8) a polynomial of ordennax[a, b]. Since each element,, of
where Vv 2 Volz) - Vi(2)]* and Q 2p + NoL. The matrix Q includes a causal factor and an anticausal factor,
elementp,, of matrix P is the z-transform of the sampled each of orderk, |Q| will, in general, have a causal factor
sequence of and anticausal factor, each of ord&f(L + 1). Similarly,
M—1 o0 Qav Will, in general, have a causal factor and anticausal
Z / ho (7)1, (7 — ) dr. (59) factor, each of orde#{ L. Accordingly, |Q|/C[|Q]] will be
5 /—oo anticausal (and maximum phase) with ord€(L + 1), and

h hel ¢ matri h ; ided C[Qoo] Will be causal (and minimum phase) with ordKTL.
us, each e_emelqt,,b of matrix Q has a two-side responsec mbining these results together, the causal part of each filter
such that it includes both a causal factor and an anticau

ilz) (for ¢ > 0) will have KL zeros andK L poles, and
factor of equal length. If we assume that all chandéig(¢)} its a)nticausal part will havé( L zeros andK (L + 1) poles.
have a finite memory of{ symbol periods(’;;(t) = 0 for

X ince each front-end matched filtef;(—1) is anticausal with

t< \(/)viﬁnt()jet >0|K Q;n?gzngpirzaef;al and anticausal factors cfingthK (we can always set the synchronization timing such

qabUsin thelzj myatrix identity [22] ’ that h;;(¢) is a causal function), the overall feedforward filter
9 y on each branch will have a causal part wih, zeros and

Q!= Qagj 60) KL poles and an anticausal part wifd§(L + 1) zero and
Q| K(L + 1) poles.
where Q.q; is called theadjugate matrixof matrix Q, and In general, a pole filter has an infinite impulse response.

the (a, b)th element,; of the transpose matrix dR.q; iS Nevertheless, we can always truncate a pole filter which is
called thecofactor corresponding to théa, b)th elementy,, Ccausal and minimum phase, or anticausal and maximum phase,
of matrix Q [Qa = (—1)°*%|Q,,|, whereQ,, is obtained by such that the effect of truncation is small compared to the

deleting theath row andbth column of Q], we can rewrite background noise. Thus, the lengths in unitg'adf the causal

58) as and anticausal parts (denoted@snd A, respectively) of the
(58)

Quai optimum feedforward filter can be given as

V= |(3|J U1+ B(2))
Qoo Qoi - Qoil” DFE(M > L+1). C=KL(l1+ «)
= Ql “— (1+ B(»)) (61) A=K(L+ {1+ «). (66)

wherel + B(z) is given by [see (43)] Here, « determines the truncated length of a pole filter

14 B(z) =C[1 + ()] (1—¢2)7tor(1—¢271)~L Note thatC = 0 when L = 0;

1 this agrees with the known result that, in the absence of CClI,
:C{WQ*U} the optimum feedforward filter of a DFE is anticausal.
0

Note that the required length of the feedback filteKig- C,
_ CHQ”. (62) since the optimum feedback filter completely cancels the
C[Qool postcursors of the desired signal.
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Similarly, we can estimate the filter length for an LEsection. Nevertheless, the general relationship regarding how
receiver using (61), wittB(z) set to zero; this gives the required length of the whitening filter varies with the
dispersion length, number of interferers, and order of diversity,
LE (M > L+1): should remain unchanged for any given SNR.
C=KL+1)(1+a)-K

A=K(L+1)(1+a). (67) V. NUMERICAL RESULTS

Note that the causal length of the LE receiver is greater (b We now study the effect of Fhermal NoISe on the re_qmred
Ka) than that of the feedforward filter of the DFE receiver. llter span of DFE and LE receivers. As discussed earlier, we
The above results are valid under the condition that t&Pect the required filter span of an MLSE receiver to be the
MMSE solution in (61) iscompact meaning that there is no S&Me as that qf a DFE receiver (although this .needs .to be
cancellation of highest order terms in the summation in (68joven for all given SNR’s). For the purpose of illustration,
for all determinants. By working on specific examples, W€ @ssume a single-carrier system using quaternary phase-
found (61) to be compact whehl > L + 1. Otherwise, the shift keying with Nyquist filtering. We also assumeraultiray

MMSE solution based on the general filter model [given iff€/@y profile for all the channels, where all the rays are of
(17)] is compact. equal power, independently Rayleigh faded, and uniformly

Using the same analytical approach as above, we estimg@ced by an intervel’ (the symbol period). The fading is
the filter length for the case/ < L + 1 as a§sumed to be independent for _dlfferent signal sources and
diversity branches. We choose this channel model for several
LE and DFE(M < L+ 1): reasons: first, we define the rays to’Bespaced so that, with
C=KM(l+a)-K Nyquist filtering, the channel memory is strictly restricted to
A= KM+ a) (68) K, for a given K + 1-ray delay profile (see the discussion
’ at the end of this section regarding cases where the channel

The filter length results are the same for both LE and DFEeMoOrY is not strictly restricted ). Furthermore, since the

receivers in this case. frequency response of&spaced multiray channel is periodic,
We now focus on the MLSE receiver. Using (63) and thwith period1/T, there is no need to consider spectrum folding
relationship in (55), we obtain in our numerical computations. Accordingly, we assume the
. use ofZ-spaced equalizers in all the finite-length performance
Varss = [RQoo Qo1 -+ Qo] . results. Finally, we assume the rays to be equal power so that
((1Ql = NoQoo)/C|Q[ — NoQoo]) - C[Qoo] the results obtained give a worst case (i.e., more conservative)

(69) estimate of the required filter length for a given channel

. ) S __memory compared to channel models with unequal delayed
Comparing (69) with (63), we see that individual terms in thgsing.

two equations have the same highest order and, thus, the Weig. 5(a)-(c) show the infinite-length performance of
filters have the same length. This is also true when we COMPRiRISE-DFE and MMSE-LE receivers compared to the
the filter lengths using '_[he general filter model. We, thereforg,aiched filter (MF) bound. The performance is given in terms
conclude that the optimum front-end filter for the MLSEsf the average bit error rate (BER) as a function of the average
receiver has the same length as the optimum feedforward fllfﬁbut SNR, where the average is over Rayleigh fading. The

of the DFE receiver; namely fading of individual channels was generated by Monte Carlo
MLSE (M > L + 1): simulation. For a given set of channel realizations, the BER
- ' was computed as
C=KL(1+«a)
A=K(L+1)(1+a) (70) P = éerf(;(, /g) (72)
and
MLSE (M < L+ 1): whereerfc(-) is the complementary error function [13], and
C=KM(1+a)- K the output SNRy, is given by [19]
_ 1
A=KM(1+a). (71) - —1,  for DFE (73)
CDFE
Note that the above analysis does not take into account 1
the effect of thermal noise, i.e., strictly speaking, the filter Yo = ‘e 1, for LE (74)

length expressions given above are valid only when the input

SNR approaches infinity. As the SNR decreases, we expé

the required length of the whitening filtev or Ry} vS(2) o = (T(f)) (75)
(S(2) denotes the temporal filter, e.gf(z) = 1/(1 + I'(2))

for an LE receiver) to decrease and eventually approach zerd eprg, €Ly, and I'(f) are given by (25), (31), and (16),
when thermal noise dominates both CCI and ISI. Althougtespectively.

analytical results are not available, it is possible to study Note that we only consider the case &f > L + 1, i.e.,

this effect through numerical examples, as shown in the negRke receiver has a sufficient number of antennas to suppress all
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- —— MFBound ]
assume that each of theinterferers has the same power as the
% o[ 2-Ray (K= 1) ] desired signal. Thus, the average signal-to-interference ratio is
x 10°F _4-Ray(K=3) 3 0 dB for L = 1 and —4.8 dB for L = 3. Fig. 5(a)—(c) show
o g 6-Ray (K=5) ] that the infinite-length DFE performs to within 1-2 dB of the
LE 10 i ] MF bound in all cases, while foM = L + 1 [Fig. 5(a) and
= § ; (c)], the performance of the infinite-length LE is worse than
m i that the MF bound by up to 6 dB, at BER around 0
10 E . 3 Fig. 6-9 provide results for finite-length MMSE-DFE and
: ] MMSE-LE receivers. In all of these figures, we plot the
10 I ) R average BER as a function of the length (the number of
0 5 10 15 20 25 30 symbol-spaced taps) of the causal and/or anticausal portion

of the filter on each diversity branch. The total filter length is

SNR (dB) C+ A+ 1, whereC and A are the length of the causal and
© anticausal portions, respectively, as defined earlier. In all of the

Fig. 5. Infinite-length performance of space-time MMSE-DFE anfigures, the BER is shown to decrease with the filter length un-
NIMSE-LE, _Coinp(g)reg fo the MF bound. (= 1M = 2. () {ilitreaches an asymptotic value (a “floor"). The arrows on the
- IR right side of each curve show the corresponding infinite-length
BER (due to an artifact of the computation, the infinite-length

dominant interferers (the remaining interference can be treaHR’s do not necessarily match the BER floors exactly). The
as Gaussian noise if its total energy is sufficiently low). Weiangle symbol on each curve indicates the required filter
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e | WITH PREDICTED LENGTHS BASED ON (77) (SHOWN
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— L=1 TABLE I
o e o "“jj:""*'f REQUIRED FILTER LENGTH RESULTS IN FiG. 7, COMPARED
WITH PREDICTED LENGTHS BASED ON (77) (SHOWN IN
2 i PARENTHESEY. L = 1, M = 2, AND 7 = 18 dB
fooS -
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Filter Length Aand C C 2(1.%) 5(54) 9
Fig. 8. Effect of the number of interferefs on the required filter length of A 5(4.6) 14 (13.8) 23 (23)

a space-time MMSE-DFEVM = 4, K = 3, and¥ = 9 dB.

length to achieve “near-optimum” performance, where “near- TABLE 1l
REQUIRED FILTER LENGTH RESULTS IN Fic. 8, COMPARED

optimum” is defined here as being within 5% of the BER floor. WITH PREDICTED LENGTHS BASED ON (77) (S1OWN IN

We assume in all the DFE results (Figs. 6-8) that the feedback PARENTHESEY. M = 4, K = 3, AND 7 = 9 dB

filter is sufficiently long such that it completely cancels the

postcursor ISl of the desired signal. L=0 L=1 L=2 L=3
Fig. 6 shows the effect of the average input SNRn the

required filter length of the DFE receiver, assuming a four- c 0 (0) 32.7) 5(5.4) 8(8.1)

ray channel mode{K = 3) with no CCI (L = 0). In this

case, the optimum feedforward filter is anticausal [see (66)], A 6(5.7) 8(8.4) 10(11.1) 12 (13.8)

so the performance is given only as a function 4f The
results forM = 1 show that the required filter length to
achieve near-optimum performance increases by one for eviyYis section that the required filter length grows almost
3-dB increase in SNR in most cases (the required length stgyary with the average input SNR in decibels. Combining
unchanged when increases from 15 to 18 dB). We will disCUgRyse Tesults together, and taking into account the fact that the
this relationship in more detail later. The example results fof,ic4usal part of the filter always includes a matched filter of
M =2 andM = 4 show that the required filter length doegength ¢ we obtain the following empirical formulae for the

not change with the number of diversity antennas. required filter length:
Fig. 7 shows results with different dispersion lengths, as-
sumingL = 1,M = 2, and¥ = 18 dB. In this case, the DFE: C= KL¢(7)
performance is given as a function of the lengths of both Ax K+ K(L+1)¢F) (77)

the causal and anticausal portions of the filter; the results

for each portion are obtained by assuming a sufficient lengtthere

for the other portion. These results show an approximately 5

proportional relationship between the required filter length and ¢ =15 (78)

the channel dispersion length: o ) )
and# is in decibels. The good agreement between the filter

C~18K lengths predicted by (77) and the simulation results are shown
A~ 46K, for L =1,M =2andv = 18dB. (76) In Tables I-lll. Although not shown here, we also found
good agreement when testing the empirical formulae against
Fig. 8 shows results for different values 6f assuming a simulation results with other sets of parameter values.
four-ray channel modelK = 3) with M =4 and¥ = 9 dB. Despite its empirical nature, (77) has meaningful analytical
The average SIR is 0;3, and—4.8 dB for . = 1, . = 2, justifications. First, it gives the same form of expressionor
and L = 3, respectively. The results show that the requireds the analytical result in (66), except for the dependence on
filter length grows linearly with the number of interferers. the SNR [which is also expected ofin (66)]. Second, when
So far, all the simulation results generally agree with tte — oo such that¢(7) > 1, the expression ford in (77)
analytical results in (66), i.e., the required filter length tbecomesA — K (L + 1)¢(7); thus, we also obtain the same
achieve near-optimum performance grows linearly wikh form of expression ford as (66). As discussed earlier, (66) is
and L, but it does not depend of/. In addition, we found also valid wheriy — oc. Finally, (77) gives the lengttd as
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of a linear filter on each antenna branch, followed by a DFE
or MLSE. In this analysis, we derived explicit expressions for
the linear filter [e.g., (29), (44), and (54)], which are novel
to the best of our knowledge. Usingtransform analysis, we
also derived expressions for the linear filter length showing
that the required span is proportional to the channel dispersion
length and the number of interferers. We then used computer
simulation to derive empirical expressions for the required
filter span which show that the span is also proportional to the
input SNR in decibels. The derived empirical expressions for
the required span are in good agreement with simulation results
with Rayleigh fading and a uniform-delay spread profile. These
expressions are useful in the design of practical near-optimum

0 5 10 15 20 25 30 35
Filter Length Aand C

Fig. 9. Required filter length for space—time MMSE-LE.= 1, M = 2,
and¥ = 18 dB.

space—time equalizers.
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the sum of the matched filter lengfd and the length of the
anticausal portion of the whitening filtéf (L + 1)¢(7) which
decreases with decreasing input SNR; this agrees with the
intuition that the length of the whitening filter should approach?!
zero when thermal noise dominates both CCI and ISI.

As for the LE receiver, the analytical results in (67) showi2]
that it has the same anticausal lengthas that of the DFE
receiver, and its causal length is given Oy= A — K. Thus, [3]
we simply modify (77) as

LE: C = K(L+ 1)¢(7)

(4]

A=K+ K(L+1)¢(7)- (79) 8]
The required filter length results in Fig. 9 agree well with the
lengths predicted by the above empirical expressions. [6

Equations (77) and (79) give useful empirical expressions
for predicting the required filter span of space-time DFE an%]
LE receivers for a given SNR. The empirical functigfy)
is given in (78) only for a specific channel model (Rayleigh
fading and a uniform delay spread profile). This function(®!
can be easily determined for other channel environments, by
studying only the single-antenna, no CCI performance, similar
to the way we determined(%) from the results in Fig. 6 and [9]
Table I.

Note that even if the channel memory is not strictly limited
to K, in practice we can truncate the memory such that tfﬂfo]
energy outside the truncation length is below some given
value. The above empirical approach should still be valid in
that case as long aX is defined consistently throughout, H
becauseK ¢(%) should be independent of the definition of
K. Finally, note thatK is typically defined by the system [12]
specifications. Our uniform delay profile results give thgg
required filter length for a giveri that will meet the system
requirements for any delay profile. [14

[15]
VI. CONCLUSION
In this paper, we studied optimum space—time equalizatio¥]

of dispersive fading channels with CCI. We first presented 18]
unified analysis of optimum space—time equalizers, consisting
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