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Abstract— In this paper, we consider optimum space–time
equalizers with unknown dispersive interference, consisting of a
linear equalizer that both spatially and temporally whitens the
interference and noise, followed by a decision-feedback equalizer
or maximum-likelihood sequence estimator. We first present a
unified analysis of the optimum space–time equalizer, and then
show that, for typical fading channels with a given signal-to-noise
ratio (SNR), near-optimum performance can be achieved with
a finite-length equalizer. Expressions are given for the required
filter span as a function of the dispersion length, number of
cochannel interferers, number of antennas, and SNR, which
are useful in the design of practical near-optimum space–time
equalizers.

Index Terms—Equalization, interference suppression, multi-
path channels, space–time processing.

I. INTRODUCTION

I N WIRELESS communication systems, cochannel interfer-
ence (CCI) and intersymbol interference (ISI) are major

impairments that limit the capacity and data rate. These prob-
lems can be mitigated by spatial-temporal (S-T) processing,
i.e., temporal equalization with multiple antennas [1]–[11].

In typical wireless systems where the cochannel interferers
are unknown at the receiver, optimum S-T equalizers, either
in a minimum mean square error (MMSE) or maximum
signal-to-interference-plus-noise ratio (SINR) sense, consist
of a whitening filter, i.e., an equalizer that whitens the CCI
both spatially and temporally, followed by a decision-feedback
equalizer (DFE) or maximum-likelihood sequence estimator
(MLSE) [12].

However, under some channel conditions with dispersive
CCI, the whitening filter requires an infinite span to achieve
near-optimum performance, even with reasonable signal-to-
noise ratios (SNR’s). For typical fading channels, though, such
channel conditions occur only occasionally, and the required
filter span for near-optimum performance is finite in most
cases. Since the filter span, specifically both the causal and
anticausal portions, determines the required memory of the
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DFE and MLSE, these filter spans determine the required
complexity of near-optimum S-T processors.

In this paper, we first present a unified analysis of the
optimum infinite-length S-T processor, considering three re-
ceiver types: 1) MMSE linear equalizer (LE); 2) MMSE-DFE;
and 3) MLSE. The unified analysis includes both previously
published results [12], [17]–[19] and additional new material.
The objective here is to provide a consistent and comprehen-
sive framework for expressing all these results in a form that
is descriptive of the functions and properties of individual
filter elements. We then present filter length analyzes for all
three receivers by analyzing the-transform expressions. We
show that, with fading channels, the filter spans of these
receivers can be truncated such that the average effect of
the truncation is small compared to the effect of thermal
noise. We then determine the required filter span to achieve
near-optimum receiver performance. These expressions for the
required filter span as a function of the dispersion length,
number of cochannel interferers, and SNR are useful in the
design of practical near-optimum space–time equalizers. Using
computer simulation, we study the effect of thermal noise on
the required filter span for specific fading channels.

In Section II, the system model and notation is defined. The
unified analysis is presented in Section III, and in Section IV
the finite filter span analysis is presented. Section V shows
numerical results. A summary and conclusions are given in
Section VI.

II. SYSTEM MODEL

We consider a system where cochannel signals are
transmitted over independently fading multipath channels to
an -branch diversity receiver. The time-domain complex
baseband expression of the received signal on theth antenna
is

(1)

where is the transmitted data sequence from theth
source, with thedesiredsource being indexed by
is the overall impulse response of the transmission link be-
tween the th source and theth antenna; is the symbol
period; and is the additive white Gaussian noise at the
th antenna. The data are independently identically,
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Fig. 1. A space–time DFE receiver.

distributed complex variables with zero mean and unit symbol
energy and are uncorrelated between sources.

The frequency-domain expression of the above received
signal is

(2)

where and are the Fourier
transforms of and respectively.
Since the data have unit symbol energy for

where denotes expectation. The noise at
each antenna has two-sided power spectrum density

The general space–time receiver using a DFE is shown in
Fig. 1 (an LE receiver model can be obtained by setting the
feedback filter response to zero). It consists of a linear feed-
forward filter, on each branch, a
combiner, symbol-rate sampler, slicer, and synchronous linear
feedback filter The feedforward filters are
shown as continuous-time filters, but they can be implemented
in practice using fractionally-spaced tapped delay lines. The
input to the feedback filter is the decided data for the
desired source. We assume correct decisions
throughout this study.

The input to the slicer (i.e., the space–time processor output)
is denoted by sequence with its Fourier transform
given by

(3)

The summation with respect to in the above equation is a
result of spectrum folding due to symbol-rate sampling.

Based on the MMSE criterion, the filters are optimized by
minimizing the mean square error (MSE)

(4)

Fig. 2 shows a space–time receiver using an MLSE. Here,
the goal of optimization is to maximize the signal power
(without suppressing ISI) to CCI plus noise power ratio, while
whitening the CCI and noise components of the input
to the MLSE.

Fig. 2. A space–time MLSE receiver.

Our analysis also includes the use of-transforms. The -
transform of a sampled sequence of a continuous-time function

is where [we multiply
by so that and have the same average

energy per symbol interval]. The relation between-transform
and Fourier transform is given by the following using the
Poisson sum formula [13]:

(5)

where is the Fourier transform of and
It is easy to show that

(6)

where is the Fourier trans-
form of the sequence The contour of the integration on
the right side of (6) is the unit circle. For convenience, we omit
the tilde sign from our -transform notation throughout the
rest of this paper, e.g., will be written simply as
Furthermore, if is the Fourier transform of a symbol-
spaced sequence (instead of a continuous-time function), then

(7)

III. U NIFIED INFINITE-LENGTH THEORY

A. Optimum Filter Expressions for DFE and LE Receivers

The MMSE solution for the feedforward filters
with unconstrained length can be derived by using (2)–(4) and
setting the derivatives to zero. This
yields

(8)

where

(9)
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(10)

(11)

(12)

is the correlation matrix of the desired signal,
is the correlation matrix of the interference plus noise,
is the identity matrix, and the superscriptsand denote
complex conjugate and transpose, respectively. We assume
that the desired and CCI sources are strictly band limited
to ( is a positive integer), and therefore

when is odd, and when is even
(e.g., and when there is no excess bandwidth).
Note in (9) and (10) that excess bandwidth provides additional
diversity which can be exploited when there is sufficient
transmit power outside the Nyquist band, e.g., in a spread
spectrum system [14] (or see also [17]).

Using the matrix inversion lemma [12, Appendix D], it can
be shown that

(13)

Therefore, (8) becomes

(14)

Furthermore, we can define the signal-to-interference-plus-
noise power density ratio at frequency as

(15)

where the superscript denotes conjugate transpose
( is the output signal power density, and

is the output interference-plus-noise density at
frequency ). Substituting (14) into (15) yields

(16)

Thus, we can rewrite the optimum feedforward filter solution
as

(17)

Equation (17) gives the form of the MMSE solution, well
known in array processing [12] (except for the consideration
of spectrum folding and feedback filtering). This equation
indicates that the optimum feedforward filter consists of a
space–time filter which performs spatial prewhiten-

ing ( is the whitening filter of CCI and noise) and
matching to the desired channel, followed by a temporal
filter , which can be regarded as a
post-whitening filter under some zero-forcing condition, as
described below.

The optimum feedback filter can be determined
through spectrum factorization. Substituting (17) into (3),
and using (4) and (7), we obtain

(18)

(19)

where and are the -transform equivalents of
and Using spectral factorization theory [19],
and can be written as

(20)

where the constant is given by

(21)

and

(22)

and is canonical, meaning that it iscausal for
monic andminimum phase(all of its poles

are inside the unit circle, and all of its zeros are on or inside
the unit circle).

Using the Schwarz inequality, it can be shown that the MSE
in (18) is minimized when

(23)

Substituting (20)–(23) into (17) and (18), we obtain

(24)

and

(25)

Using (16), (20), and (24), the CCI plus noise power density
at frequency is

(26)

Note that as for the CCI plus noise
power density becomes a constant over Under this
condition, we can regard in (24) [or

in (17)] as a post-whitening filter.
As will be relevant later, we can write also as

(27)

where denotes canonical factor. The corresponding
Fourier transform is given as

(28)

Using the above expression, we can write (17) as

(29)
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Fig. 3. An equivalent model of the space–time DFE receiver in Fig. 1.

The optimum LE is obtained by setting to zero in
(17) and (18)

(30)

and

(31)

B. An Alternative Solution for DFE and LE Receivers

The optimum space–time filter solution in (17) is based on
a general model which does not make any prior assumptions
regarding the filter structure. Without loss of optimality, an
analytical receiver model suggested by many in the literature
(e.g., [15]–[18]) assumes the use of a bank of matched
filters each corresponding to the signal source
on diversity branch which, after diversity combining, is
followed by a bank of -spaced transversal filters
each corresponding to the signal source(see Fig. 3). This
analytical model leads to a different form of solutions which
are important to our filter length analysis. The following
derivation is similar to the LE receiver derivation in [18], but
here we also provide the solution for the DFE.

In Fig. 3, the Fourier transform of the input to the slicer
can be written as

(32)

where and are the overall channel and feed-
forward filter responses for the desired signal and theth
interference, and is the noise at the combined output
of the feedforward filters. Let
and We then have the following
relationship:

(33)

where is an correlation matrix whose
th element is given by

(34)

Furthermore, we can write

(35)

where is a column vector with
rows, and

(36)

The MSE for this receiver is given by

(37)

where

(38)

(39)

and

(40)

Using (35) and (36), the MSE becomes

(41)

The MMSE solution for is obtained by solving
for to We then obtain

(42)

It can be shown that this receiver achieves the same MMSE
as (25) (or (31) in the case of an LE receiver) and that

(43)
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Fig. 4. An equivalent model of the space–time MLSE receiver in Fig. 2.

Again, is the canonical factor of
Accordingly, we can rewrite (42) as

(44)

For an LE receiver

(45)

C. Optimum Linear Filtering for MLSE

Fig. 4 shows an equivalent model of the MLSE receiver in
Fig. 2. The front-end filters are now represented by spatial
filters which maximize SINR of their combined
output, followed by a post-whitening filter Let
denote the vector of similar to (9). The signal-to-
interference-plus-noise power density ratio is then [cf.
(15)]

(46)

The optimum is obtained by solving
for this gives the relationship

(47)

The maximum is, therefore, given by the maximum
eigenvalue of Let be the eigenvector cor-
responding to this maximum eigenvalue, and substitute

into (46). We obtain

(48)

where

(49)

Equation (48) has the same form as (17). As a result, we obtain
the same expression for as (16). By factoring as

(50)

we can find a post-whitening filter

(51)

which satisfies

constant (52)

where the overall filter response is given by

(53)

Comparing (53) to (29), we find that

(54)

This relationship is extendable to the case where we use the
analytical feedforward filter model in Fig. 3 to represent the
front-end filter of the MLSE receiver. Thus, we can also write

(55)

Accordingly

(56)

In (54), when such that then
i.e., the optimum front-end filter for an

MLSE receiver is equivalent to the optimum feedforward filter
of a DFE receiver. This is usually the case when there is no
CCI and the input SNR is sufficiently high [20]. However, it
is generally not true in the presence of strong CCI’s.

Also, using (53) and (56), it can be shown that

(57)

Thus, the desired signal at the output of the front-end filter
has a canonical impulse response; this is the known desired
property of the input to an MLSE [21] (in addition to the
noise being white).

IV. FILTER LENGTH ANALYSIS

Our filter length analysis is based on counting the number
of zeros and poles in the -transform expression of the
optimum space–time filter. For all three receivers (LE, DFE,
and MLSE), there are two forms of optimum filter solutions:

1) one based on the general model (with a linear filter on
each branch);

2) one based on the analytical model (with a bank of
matched filters on each branch, followed by common
filters).
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The filter length determined by each solution is valid under
different assumptions. The filter length based on the general
model is valid when i.e., when the number of
interferers is equal to or greater than the order of diversity due
to multiple antennas and excess bandwidth for convenience,
we write the overall order of diversity as M, instead of .
The filter length based on the analytical model is valid when

The reason for these different conditions will
become apparent later.

Since the general analytical approach for determining the
filter length is the same for both solution forms, we only
provide details for one of them below. We choose to work
on the analytical model case because it is slightly more
complicated than the other case, and because the condition
under which it is valid (the order of diversity exceeding the
number of dominant interferers) is where the most interference
suppression is achieved, i.e., an array with antennas can
null up to interferers [23].

We begin by working on the MMSE solution for the DFE
receiver. The -transform equivalent of (42) is

(58)

where and The
element of matrix is the -transform of the sampled
sequence of

(59)

Thus, each element of matrix has a two-sided response
such that it includes both a causal factor and an anticausal
factor of equal length. If we assume that all channels
have a finite memory of symbol periods for

and then the causal and anticausal factors of
will be polynomials of order

Using the matrix identity [22]

(60)

where is called theadjugate matrixof matrix and
the th element of the transpose matrix of is
called thecofactor corresponding to the th element
of matrix [ where is obtained by
deleting the th row and th column of ], we can rewrite
(58) as

(61)

where is given by [see (43)]

(62)

Thus, we obtain

(63)

Note that the common filter for the desired signal is

(64)

Thus, this filter is anticausal (cf. [17]).
We now focus on each term in (63). Defining a per-

mutation as a one-to-one mapping
the determinant of is [22]

(65)

where sgn or depending on whether the number
of exchanges in permutation is even or odd, and the
summation is taken over all permutations Note
that the product of two polynomials of orderand results
in a polynomial of order while the sum of them gives
a polynomial of order Since each element of
matrix includes a causal factor and an anticausal factor,
each of order will, in general, have a causal factor
and anticausal factor, each of order Similarly,

will, in general, have a causal factor and anticausal
factor, each of order Accordingly, will be
anticausal (and maximum phase) with order and

will be causal (and minimum phase) with order
Combining these results together, the causal part of each filter

(for ) will have zeros and poles, and
its anticausal part will have zeros and poles.
Since each front-end matched filter is anticausal with
length (we can always set the synchronization timing such
that is a causal function), the overall feedforward filter
on each branch will have a causal part with zeros and

poles and an anticausal part with zero and
poles.

In general, a pole filter has an infinite impulse response.
Nevertheless, we can always truncate a pole filter which is
causal and minimum phase, or anticausal and maximum phase,
such that the effect of truncation is small compared to the
background noise. Thus, the lengths in units ofof the causal
and anticausal parts (denoted asand respectively) of the
optimum feedforward filter can be given as

DFE

(66)

Here, determines the truncated length of a pole filter
or Note that when

this agrees with the known result that, in the absence of CCI,
the optimum feedforward filter of a DFE is anticausal.

Note that the required length of the feedback filter is
since the optimum feedback filter completely cancels the
postcursors of the desired signal.
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Similarly, we can estimate the filter length for an LE
receiver using (61), with set to zero; this gives

LE

(67)

Note that the causal length of the LE receiver is greater (by
) than that of the feedforward filter of the DFE receiver.

The above results are valid under the condition that the
MMSE solution in (61) iscompact, meaning that there is no
cancellation of highest order terms in the summation in (65)
for all determinants. By working on specific examples, we
found (61) to be compact when Otherwise, the
MMSE solution based on the general filter model [given in
(17)] is compact.

Using the same analytical approach as above, we estimate
the filter length for the case as

LE and DFE

(68)

The filter length results are the same for both LE and DFE
receivers in this case.

We now focus on the MLSE receiver. Using (63) and the
relationship in (55), we obtain

(69)

Comparing (69) with (63), we see that individual terms in the
two equations have the same highest order and, thus, the two
filters have the same length. This is also true when we compare
the filter lengths using the general filter model. We, therefore,
conclude that the optimum front-end filter for the MLSE
receiver has the same length as the optimum feedforward filter
of the DFE receiver; namely

MLSE

(70)

and

MLSE

(71)

Note that the above analysis does not take into account
the effect of thermal noise, i.e., strictly speaking, the filter
length expressions given above are valid only when the input
SNR approaches infinity. As the SNR decreases, we expect
the required length of the whitening filter or
( denotes the temporal filter, e.g.,
for an LE receiver) to decrease and eventually approach zero
when thermal noise dominates both CCI and ISI. Although
analytical results are not available, it is possible to study
this effect through numerical examples, as shown in the next

section. Nevertheless, the general relationship regarding how
the required length of the whitening filter varies with the
dispersion length, number of interferers, and order of diversity,
should remain unchanged for any given SNR.

V. NUMERICAL RESULTS

We now study the effect of thermal noise on the required
filter span of DFE and LE receivers. As discussed earlier, we
expect the required filter span of an MLSE receiver to be the
same as that of a DFE receiver (although this needs to be
proven for all given SNR’s). For the purpose of illustration,
we assume a single-carrier system using quaternary phase-
shift keying with Nyquist filtering. We also assume amultiray
delay profile for all the channels, where all the rays are of
equal power, independently Rayleigh faded, and uniformly
spaced by an interval (the symbol period). The fading is
assumed to be independent for different signal sources and
diversity branches. We choose this channel model for several
reasons: first, we define the rays to be-spaced so that, with
Nyquist filtering, the channel memory is strictly restricted to

for a given -ray delay profile (see the discussion
at the end of this section regarding cases where the channel
memory is not strictly restricted to Furthermore, since the
frequency response of a-spaced multiray channel is periodic,
with period there is no need to consider spectrum folding
in our numerical computations. Accordingly, we assume the
use of -spaced equalizers in all the finite-length performance
results. Finally, we assume the rays to be equal power so that
the results obtained give a worst case (i.e., more conservative)
estimate of the required filter length for a given channel
memory compared to channel models with unequal delayed
paths.

Fig. 5(a)–(c) show the infinite-length performance of
MMSE-DFE and MMSE-LE receivers compared to the
matched filter (MF) bound. The performance is given in terms
of the average bit error rate (BER) as a function of the average
input SNR, where the average is over Rayleigh fading. The
fading of individual channels was generated by Monte Carlo
simulation. For a given set of channel realizations, the BER
was computed as

(72)

where is the complementary error function [13], and
the output SNR is given by [19]

for DFE (73)

for LE (74)

and

(75)

and and are given by (25), (31), and (16),
respectively.

Note that we only consider the case of i.e.,
the receiver has a sufficient number of antennas to suppress all
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(a)

(b)

(c)

Fig. 5. Infinite-length performance of space–time MMSE-DFE and
MMSE-LE, compared to the MF bound. (a)L = 1; M = 2. (b)
L = 1; M = 4. (c) L = 3; M = 4:

dominant interferers (the remaining interference can be treated
as Gaussian noise if its total energy is sufficiently low). We

Fig. 6. Effect of SNR on the required filter length of a space–time
MMSE-DFE.L = 0: Four-ray channel(K = 3):

Fig. 7. Effect of channel dispersion lengthK on the required filter length
of a space–time MMSE-DFE.L = 1; M = 2; and
 = 18 dB.

assume that each of theinterferers has the same power as the
desired signal. Thus, the average signal-to-interference ratio is
0 dB for and 4.8 dB for Fig. 5(a)–(c) show
that the infinite-length DFE performs to within 1–2 dB of the
MF bound in all cases, while for [Fig. 5(a) and
(c)], the performance of the infinite-length LE is worse than
that the MF bound by up to 6 dB, at BER around 10

Fig. 6–9 provide results for finite-length MMSE-DFE and
MMSE-LE receivers. In all of these figures, we plot the
average BER as a function of the length (the number of
symbol-spaced taps) of the causal and/or anticausal portion
of the filter on each diversity branch. The total filter length is

where and are the length of the causal and
anticausal portions, respectively, as defined earlier. In all of the
figures, the BER is shown to decrease with the filter length un-
til it reaches an asymptotic value (a “floor”). The arrows on the
right side of each curve show the corresponding infinite-length
BER (due to an artifact of the computation, the infinite-length
BER’s do not necessarily match the BER floors exactly). The
triangle symbol on each curve indicates the required filter
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Fig. 8. Effect of the number of interferersL on the required filter length of
a space–time MMSE-DFE.M = 4; K = 3; and
 = 9 dB.

length to achieve “near-optimum” performance, where “near-
optimum” is defined here as being within 5% of the BER floor.
We assume in all the DFE results (Figs. 6–8) that the feedback
filter is sufficiently long such that it completely cancels the
postcursor ISI of the desired signal.

Fig. 6 shows the effect of the average input SNRon the
required filter length of the DFE receiver, assuming a four-
ray channel model with no CCI In this
case, the optimum feedforward filter is anticausal [see (66)],
so the performance is given only as a function of The
results for show that the required filter length to
achieve near-optimum performance increases by one for every
3-dB increase in SNR in most cases (the required length stays
unchanged when increases from 15 to 18 dB). We will discuss
this relationship in more detail later. The example results for

and show that the required filter length does
not change with the number of diversity antennas.

Fig. 7 shows results with different dispersion lengths, as-
suming and dB. In this case, the
performance is given as a function of the lengths of both
the causal and anticausal portions of the filter; the results
for each portion are obtained by assuming a sufficient length
for the other portion. These results show an approximately
proportional relationship between the required filter length and
the channel dispersion length:

for and dB (76)

Fig. 8 shows results for different values of assuming a
four-ray channel model with and dB.
The average SIR is 0, 3, and 4.8 dB for
and respectively. The results show that the required
filter length grows linearly with the number of interferers.

So far, all the simulation results generally agree with the
analytical results in (66), i.e., the required filter length to
achieve near-optimum performance grows linearly with
and but it does not depend on In addition, we found

TABLE I
REQUIRED FILTER LENGTH RESULTS IN FIG. 6, COMPARED

WITH PREDICTED LENGTHS BASED ON (77) (SHOWN

IN PARENTHESES). L = 0; M = 1; AND K = 3

TABLE II
REQUIRED FILTER LENGTH RESULTS IN FIG. 7, COMPARED

WITH PREDICTED LENGTHS BASED ON (77) (SHOWN IN

PARENTHESES). L = 1; M = 2; AND 
 = 18 dB

TABLE III
REQUIRED FILTER LENGTH RESULTS IN FIG. 8, COMPARED

WITH PREDICTED LENGTHS BASED ON (77) (SHOWN IN

PARENTHESES). M = 4; K = 3; AND 
 = 9 dB

in this section that the required filter length grows almost
linearly with the average input SNR in decibels. Combining
these results together, and taking into account the fact that the
anticausal part of the filter always includes a matched filter of
length we obtain the following empirical formulae for the
required filter length:

DFE:

(77)

where

(78)

and is in decibels. The good agreement between the filter
lengths predicted by (77) and the simulation results are shown
in Tables I–III. Although not shown here, we also found
good agreement when testing the empirical formulae against
simulation results with other sets of parameter values.

Despite its empirical nature, (77) has meaningful analytical
justifications. First, it gives the same form of expression for
as the analytical result in (66), except for the dependence on
the SNR [which is also expected of in (66)]. Second, when

such that the expression for in (77)
becomes thus, we also obtain the same
form of expression for as (66). As discussed earlier, (66) is
also valid when Finally, (77) gives the length as
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Fig. 9. Required filter length for space–time MMSE-LE.L = 1; M = 2;

and 
 = 18 dB.

the sum of the matched filter length and the length of the
anticausal portion of the whitening filter which
decreases with decreasing input SNR; this agrees with the
intuition that the length of the whitening filter should approach
zero when thermal noise dominates both CCI and ISI.

As for the LE receiver, the analytical results in (67) show
that it has the same anticausal lengthas that of the DFE
receiver, and its causal length is given by Thus,
we simply modify (77) as

LE:

(79)

The required filter length results in Fig. 9 agree well with the
lengths predicted by the above empirical expressions.

Equations (77) and (79) give useful empirical expressions
for predicting the required filter span of space–time DFE and
LE receivers for a given SNR. The empirical function
is given in (78) only for a specific channel model (Rayleigh
fading and a uniform delay spread profile). This function
can be easily determined for other channel environments, by
studying only the single-antenna, no CCI performance, similar
to the way we determined from the results in Fig. 6 and
Table I.

Note that even if the channel memory is not strictly limited
to in practice we can truncate the memory such that the
energy outside the truncation length is below some given
value. The above empirical approach should still be valid in
that case as long as is defined consistently throughout,
because should be independent of the definition of

Finally, note that is typically defined by the system
specifications. Our uniform delay profile results give the
required filter length for a given that will meet the system
requirements for any delay profile.

VI. CONCLUSION

In this paper, we studied optimum space–time equalization
of dispersive fading channels with CCI. We first presented a
unified analysis of optimum space–time equalizers, consisting

of a linear filter on each antenna branch, followed by a DFE
or MLSE. In this analysis, we derived explicit expressions for
the linear filter [e.g., (29), (44), and (54)], which are novel
to the best of our knowledge. Using-transform analysis, we
also derived expressions for the linear filter length showing
that the required span is proportional to the channel dispersion
length and the number of interferers. We then used computer
simulation to derive empirical expressions for the required
filter span which show that the span is also proportional to the
input SNR in decibels. The derived empirical expressions for
the required span are in good agreement with simulation results
with Rayleigh fading and a uniform-delay spread profile. These
expressions are useful in the design of practical near-optimum
space–time equalizers.
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