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Abstract ~- In this paper, we consider optimum space-time
equalizers with unknown dispersive interference, consisting of a lin-
ear equalizer that both spatially and temporally whitens the inter-
ference and noise, followed by a decision-feedback equalizer (DFE)
or maximum-likelihood sequence estimator (MLSE). We first
present a unified analysis of the optimum space-time equalizer, and
then show that, for typical fading channels with a given signal-to-
noise ratio (SNR), near-optimum performance can be achieved with
a finite-length equalizer. Expressions are given for the required fil-
ter span as a function of the dispersion length, number of cochannel
interferers, number of antennas, and SNR, which are useful in the
design of practical, near-optimum space-time equalizers.

1. INTRODUCTION

In wireless communication systems, cochannel interference (CCI)
and intersymbol interference (ISI) are major impairments that limit the
capacity and data rate. These problems can be mitigated by spatial-tem-
poral (S-T) processing, i.e., temporal equalization with multiple anten-
nas (e.g., [11).

In typical wireless systems where the cochannel interferers are
unknown at the receiver, optimum S-T equalizers, either in 2 minimum
mean square error (MMSE) or maximum signal-to-interference-plus-
noise ratio (SINR) sense, consist of a whitening filter, i.e., an equalizer
that whitens the cochannel interference both spatially and temporally,
followed by a decision-feedback equalizer (DFE) or maximum-likeli-
hood sequence estimator (MLSE) [2].

However, under some channel conditions with dispersive cochan-
nel interference, the whitening filter requires an infinite span to achieve
near-optimum performance, even with reasonable signal-to-noise ratios
(SNR’s). For typical fading channels, though, such channel conditions
occur only occasionally, and the required filter span for near-optimum
performance is finite in most cases. Since the filter span, specifically
both the causal and anticausal portions, determines the required mem-
ory of the DFE and MLSE, these filter spans determine the required
complexity of near-optimum S-T processors.

In this paper, we first present a unified analysis of the optimum
infinite-length S-T processor, considering three receiver types: (i) a
MMSE linear equalizer, (ii) a MMSE-DFE, and (iii) a MLSE. The uni-
fied analysis includes both previously published results {2]-[5] and
additional new material. The objective here is to provide a consistent
and comprehensive framework for expressing all these results in a form
that is descriptive of the functions and properties of individual filter ele-
ments. We then present filter length analyses for all three receivers, by
analyzing the z-transform expressions. We show that, with fading chan-
nels, the filter spans of these receivers can be truncated such that the
average effect of the truncation is small compared to the effect of ther-
mal noise. We then determine the required filter span to achieve near-
optimum receiver performance. Using computer simulation, we study
the effect of thermal noise on the required filter span for specific fading
channels.

1. SYSTEM MODEL

We consider a system where L + 1 cochannel signals are transmit-
ted over independently fading multipath channels to an M-branch diver-
sity receiver. The time-domain complex baseband expression of the
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received signal on the j-th antenna is

r(1) = X X xuhy (t=nT) +n,(1) M

i=0n= -
where {x,,;} is the transmitted data sequence from the i-th source, with
the desired source being indexed by i =0, h; (1) is the overall impulse
response of the transmission link between the i-th source and the j-th
antenna, T is the symbol period, and n;(?) is the additive white Gauss-
ian noise at the j-th antenna. The data {x,,} are independent, identically
distributed (i.i.d.) complex variables with zero mean and unit symbol
energy, and are uncorrelated between sources.
The frequency-domain expression of the above received signal is

L
R = ZX.OWH,() +N,(N @
i=0
where R, (), X;(f), H,(f), and N;(f) are the Fourier Transforms of
r; (), {x,}, h;(1), and n;(2), respectively. Since the data have unit
symbol energy, E[|X,(H)'] =1 for |f|<1/(2T), where E[-]
denotes expectation. The noise at each antenna has two-sided power
spectrum density N, .
The general space-time receiver using a DFE is shown in Fig. 1 (a
LE receiver model can be obtained by setting the feedback filter
response to zero). It consists of a linear feedforward filter W, (f),j =0,
1, .., M~1, on each branch, a combiner, symbol-rate sampler, slicer,
and synchronous linear feedback filter B (f). The feedforward filters
{W,(f)} are shown as continuous-time filters, but they can be imple-
mented in practice using fractionally-spaced tapped delay lines. The
input to the feedback filter is the decided data x,,,,} for the desired
source. We assume correct decisions ( X, = x,o) throughout this study.
The input to the slicer (i.e., the space-time processor output) is
denoted by sequence {y, }, with its Fourier transform Y (f) given by

R m m
Yy =X X W,«(f— T)Rj(f-T -BOX0 ©)
jrOm= —oe
The summation with respect to m in the above equation is a result of
spectrum folding due to symbol-rate sampling.
Based on the MMSE criterion, the filters are optimized by mini-
mizing the mean square error (MSE):

¢ = El|y-xd1 = T EIY(D -X, (D[ df @)
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Fig. 1. A space-time DFE receiver
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Fig. 2. A space-time MLSE receiver

Fig. 2 shows a space-time receiver using a MLSE. Here, the goal
of optimization is to maximize the signal power (without suppressing
ISI) to CCI plus noise power ratio, while whitening the CCI and noise
components of the input { y, } to the MLSE.

1. UNIFIED INFINITE-LENGTH THEORY

A. Optimum Filter Expressions for DFE and LE Receivers

The MMSE solution for the feedforward filters {W,;(f) } with
unconstrained length can be derived by using (2)-(4) and setting the

derivatives { )} to zero. This yields

de
aw[f__

W= [R;+R,,, ) 'H;(1+B () (5)

wA-3) - e-2) e fed) Wu-'(f%)lr
..H,:M_(f— %) ...... H,(f+ %) H;,M,I(fﬂ“ %)]

A
RI+N =

S HH +N,I
i=1
R, is the correlation matrix of the desired signal, R,, , is the correlation
matrix of the interference plus noise, I is the identity matrix, and the
superscripts * and T denote complex conjugate and transpose, respec-
tively. We assume that the desired and CCI sources are strictly band-
limited to f= +J°/ (2T) (J’ is a positive integer), and therefore J =
(J'—1)/2 when J’ is odd, and J= J'/2 when J’ is even (e.g., J' = |
and J = 0 when there is no excess bandwidth).

Using the matrix inversion lemma, we can rewrite (5) as [10]

1 "‘BSQ
W =R, H; =T () 6)
where
W'R,W
T() = ——2"— 7
0 W'R,, W 0

is the signal-to-interference-plus-noise power density ratio at frequency
[ . Substituting (6) into (7) yields

T = HR,.,H, ®)

Equation (6) gives the form of the MMSE solution well known in

array processing [2] (except for the consideration of spectrum folding
and feedback filtering). This equation indicates that the optimum feed-

forward filter consists of a space-time filter R}, yH,, which performs
spatial prewhitening of CCI and noise and matching to the desired chan-

1+B(f)
nel, followed by a temporal filter T+ T

The optimum feedback filter B (f) can be determined through
spectrum factorization. Substituting (6) into (3), and using (4), we
obtain

Tf ﬂll+B(f)I

1+F(/) ©)
L §(1+B() (14 B(z") )dz (10)
T oy’ 1+T(z) z

where B (z) and I'(z) are the z-transform equivalents of B (f) and
rgy,.ijs= J=1, and The contour of the integration in (10) is the unit
circle. Using spectral factorization theory {5], 1 +T (f) and 1 + I'(2)
can be written as

1+T (N =SIGNI"; 14T (2) = 5,6 (2) Glz™) an
where the constant S, is given by
So = e(ln(l«rl‘(j))) (12)
and
(& I, [1df (13)

and G (z) is canonical, meaning that it is causal (g, =0 for k<0),
monic (g, = 1), and minimum-phase (all of its poles are inside the unit
circle, and all of its zeroes are on or inside the unit circle).

Using the Schwarz inequality, it can be shown that the MSE in (9)
is minimized when

1+B(f) = 1+B(2) =G(2) (14)
Substituting (11)-(14) into (6) and (9), we obtain
Wore = R;:-NH(; _STOG_]-()«T (15)
and
Eore = 1 _ PR (16)
S,
As will be relevant later, we can write 1+ B(z) alsoas
1+B(z) = C[1+I'(2)] a7

where C{ - ] denotes canonical factor. The corresponding Fourier trans-
form is given as

1+B() = C[1+T'(NH] (18)

Using the above expression, we can write (6) as

_ C[1+T (]
Woee = R, Hy———— 19
DFE I+N o l + F (f) ( )
The optimum LE is obtained by setting B (f) to zero in (6) and (9):

- . 1
Wis = RinHi T (20)
and 1

“ = 7o) @)

B. An Alternative Solution for DFE and LE Receivers

The optimum space-time filter solution in (6) is based on a general
model which does not make any prior assumptions regarding the filter
structure. Without loss of optimality, an analytical receiver model sug-
gested by many in the literature (e.g., [3]1[4](6][7]) assumes the use of a
bank of matched filters {H;,(f) }, each corresponding to the sngnal
source i on diversity branch j, which, after diversity combining, is fol-
lowed by a bank of T-spaced transversal filters {V, (f) }, each corre-
sponding to the signal source i (see Fig. 3). This analytical model leads
to a different form of solutions which are important to our filter length
analysis. The following derivation is similar to the LE receiver deriva-
tion in [4], but here we also provide the solution for the DFE.

In Fig. 3, the Fourier transform of the input to the slicer is

YO = DNXD +RW - BOXD @
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Fig. 3. An equivalent model of the space-time DFE receiver in Fig. 1.

where D, (f) and D, (f) are the overall channel and feedforward filter

responses for the desired signal and the i-th interference, and X (/) is the
noise at the combined output of the feedforward filters. Let D=

Dot ... D] and V= [V, ... Vo(n]". We then have the
following relationship: _

D =PV (23)
where Pisan (L+ 1) x (L + 1) correlation matrix whose (a, b)-th ele-
ment p,, is given by

b S m m
Po=2 2 H,,,(f— —)H;j[f— —) . @4)
20 m= o T T

The MSE for this receiver is given by [10]
e = (VIP'PV+NV'P'V+ |1 +B(H|® (25)
—2Re[(1+B() ) V'P'U})
where U=[1,0, ..., O]Tis a column vector with L + 1 rows.
The MMSE solution for V is obtained by solving
i=0to L. We then obtain
V= (P+ND'UN+B() (26)
It can be shown that this receiver achieves the same MMSE as (16) (or
(21) in the case of a LE receiver), and that
1 1
1+T = = e 27
0 N, U (P+ND)"U @n
Again, 1+ B(z) is the canonical factor of 1+ 1T (z). Accord-
ingly, we can rewrite (26) as
Vo = (P+NJIY'UC[1+T ()] (28)
For a LE receiver

[3
V. =0 for

Ve = (P+NIY'U (29)

C. Optimum Linear Filtering for MLSE

Fig. 4 shows an equivalent model of the MLSE receiver in Fig. 2.
The front-end filters are now represented by spatial filters {W/(f) },
which maximize SINR of their combined output, followed by a post-
whitening filter W (). Let W’ denote the vector of { W/ (f) }. The sig-
nal-to-interference-plus-noise power density ratio I (f) is then (cf., (7))

7t ’
r = WORW

— 5 30
WR. W o

» W ()
........... {yn} .
R/'m {Xuo}
w(H + MLSE
RN
W (N
Fig. 4. An equivalent model of the space-time MLSE receiver in Fig. 2
' r
The optimum W’ is obtained by solving ——-,U)— =0,forj=0,1,..,
M — 1; this gives the relationship 9 L40))

RW = T ()R, W’ 31
The maximum I (f) is therefore given by the maximum eigenvalue of
R;i ¥Rs. Let W, be the eigenvector corresponding to this maximum
eigenvalue, and substitute W’ = W, into (30). We obtain

W, =BWR.H, (32)
where
W! R, W,
B = __1‘2‘__’__!_‘_"‘ (33)
W, H,

Equation (32) has the same form as (6). As a result, we obtain the same
expression for I (f) as (8). By factoring I' (f) as

ry =slciryil (34
we can find a post-whitening filter
cirynl
Y = ———— (35)
BOT()
which satisfies
WR.LW = BOIY () HR;.vH, (36)
2
= !E_M!m . —1- = cons[ant
iri s,
where the overall filter response W is given by
) 4 . CITP]
W=W¥() = R,‘,NH:,TU)——- €
Comparing (37) to (19), we find that
1+T ciryl
Wurse = Woee 0 . (38)

Cl1+T(N] ry
This relationship is extendable to the case where we use the analytical
feedforward filter model in Fig. 3 to represent the front-end filter of the
MLSE receiver. Thus, we can also write

1+T(H CITN]
ci+rl1 Ty

IV. FILTER LENGTH ANALYSIS

Our filter length analysis is based on counting the numter of zeroes
and poles in the z-transform expression of the optimum space-time filter.
For all the three receivers (LE, DFE, and MLSE), there are two forms of
optimum filter solutions: (i) one based on the general model (with a lin-
ear filter on each branch), and (ii) one based on the analytical model
(with a bank of matched filters on each branch, followed by common fil-
ters). The filter length determined by each solution is valid under differ-
ent assumptions: The filter length based on (i) is valid when
M (2N + 1) <L + 1, i.e., when the number of interferers is equal to or
greater than the order of diversity due to multiple antennas and excess
bandwidth. The filter length based on (ii) is valid when

= Vo -

(39

VMLSE
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M(2N+1) 2 L+ 1. The reason for these different conditions will
become apparent later.

Since the general analytical approach for determining the filter
length is the same for both solution forms, we only provide details for
one of them below. We choose to work on case (ii) because it is slightly
more complicated than the other case, and because the condition under
which it is valid (the order of diversity exceeding the number of domi-
nant interferers) is where the most interference suppression is achieved,
i.e., an array with M antennas can null up to M - 1 interferers [9].

We begin by working on the MMSE solution for the DFE receiver.
The z-transform equivalent of (26) is

A
V = (P+N)'U(1+B(2)) = Q'U(1+B(2)) (40)

A
where V =A[V0(z) ..V (z)] and Q@ = P+ NyI. The element p,,
of matrix P is the z-transform of the sampled sequence of

M-1
Zﬂh,,, (V) hy, (t-1)dt @1)

Thus, each element gq,, of matrix @ has a two-sided response such that
it includes both a causal factor and an anticausal factor of equal length.
If we assume that all channels { &, ()} have a finite memory of K sym-
bol periods (h;;(r) =0 for £ <0 and ¢ > KT), then the causal and anti-
causal factors of g,, will be polynomials of order K.

Using the matrix identity [8]

-l Q-a
Q0 = @J 42)

where Q. is called the adjugate matrix of matrix @, and the (a, b)-th
element Q,, of the transpose matrix of @ ; is called the cofactor corre-
sponding to the (a, b)-th element g,, of matrix Q, we can rewrite (40) as
V= %U(HB(z)) @3)
| r
%QHQJUB“)

= ——— e + V4

o

1+ B(z) is given by (see (27))

1+B(z) = C[1+T(2)] =C[ 44)

1 ]=am
NU'Q'U  ClQ4]

Thus, we obtain

T
[0w Q0 ... ]
V= @5)
del/crigin) - ClQql
We now focus on each term in (45). Defining a permutation ¢ as a
one-to-one mapping 6: (0, 1, ..., L) - (0,, G,, ..., 6,), the determi-
nant of Q is [8]

el = 25en (0) doq g, - G1o, @6)

where sgn(c)=+1 or -1 depending on whether the number of
exchanges in permutation o is even or odd, and the summation is taken
overall (L+1)! permutations ¢. Note that the product of two polyno-
mials of order a and b results in a polynomial of order a + b, while the
sum of them gives a polynomial of order max{a, b]. Since each element
q,,, of matrix @ includes a causal factor and an anticausal factor, each of
order K, |@| will, in general, have a causal factor and anticausal factor,
each of order K(L + 1). Similarly, Q,, will, in general, have a causal
factor and anticausal factor, each of order KL. Accordingly, |@]/C[|Q]]
will be anticausal (and maximum-phase) with order K(L + 1), and
C [ Q4] will be causal (and minimum-phase) with order KL. Combining
these results together, the causal part of each filter V, (z) (for i > 0) will
have KL zeros and KL poles, and its anticausal part will have KL zeros
and K(L + 1) poles. Since each front-end matched filter hi; (=1) is anti-
causal with length X (we can always set the synchronization timing
such that &, (¢) is a causal function), the overall feedforward filter on
each branch will have a causal part with KL zeros and KL poles, and an
anticausal part with K(L + 1) zeroes and K(L + 1) poles.

In general, a pole filter has an infinite impulse response. Neverthe-

less, we can always truncate a pole filter which is causal and minimum-

phase, or anticausal and maximum-phase, such that the effect of trunca-

tion is small compared to the background noise. Thus, the lengths in

units of 7 of the causal and anticausal parts (denoted as C and A, respec-

tively) of the optimum feedforward filter can be given as
DFE(M(2N+1)2L+1):

C=KL(1+0)

A=K(L+1)(l+w) “@n
Here, o determines the truncated length of a pole filter (1-&z)™" or
(1-£z)"". Note that C=0 when L = 0; thus, in the absence of CCI,
the optimum feedforward filter of a DFE is anticausal.

Note that the required length of the feedback filter is K + C, since
the optimum feedback filter completely cancels the postcursors of the
desired signal.

Similarly, we can estimate the filter length for a LE receiver using
(43), with B (2) set to zero; this gives

LE(M(2N+1)2L+1):

C=K(L+1)(1+a) -K

A=KL+1)(1+a) (48)
The causal length of the LE receiver is greater (by Kot) than that of the
feedforward filter of the DFE receiver.

The above results are valid under the condition that the MMSE
solution in (43) is compact, meaning that there is no cancellation of
highest-order terms in the summation in (46) for all determinants. By
working on specific examples, we found (43) to be compact when
M (2N + 1) 2 L + 1. Otherwise, the MMSE solution based on the gen-
eral filter model (given in (6)) is compact.

Using the same analytical approach as above, we estimate the filter
length for the case M (2N+ 1) <L+ 1 as

LEand DFE(M (2N +1) <L +1):

C=KMQ2N+1)(1+a) -K (49)

A KM@2N+1) (1+a)
The filter length results are the same for both LE and DFE receivers in
this case.
We now focus on the MLSE receiver. Using (45) and the relation-
ship in (39), we obtain

[Qoo Qo - Qol]T
(12l - NoQw) / C 1] - NoQs]) * C [Quw]

Comparing (50) with (45), we see that individual terms in the two equa-

tions have the same highest order and, thus, the two filters have the same

length. This is also true when we compare the filter lengths using the

general filter model. We therefore conclude that the optimum front-end

filter for the MLSE receiver has the same length as the optimum feed-

forward filter of the DFE receiver; namely
MLSE(M(2N+1)2L+1):

C=KL(1+a)

(50)

Vase =

A=K(L+1)(1+) (51)
and
MLSE(M(2N+1) <L+1):

C=KM@2N+1)(l+a) -K
A=KMQ2N+1)(1+o) (52)

Note that the above analysis does not take into account the effect of
thermal noise, i.e., strictly speaking, the filter length expressions given
above are valid only when the input SNR approaches infinity. As the
SNR decreases, we expect the required length of the whitening filter V
or R;l »S(2) (S(z) denotes the temporal filter, e.g, S(z)=
1/ (1+ T (2)) for a LE receiver) to decrease, and eventually approach
zero when thermal noise dominates both CCI and ISI. Although analyti-
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cal results are not available, it is possible to study this effect through
numerical examples, as shown in the next section. Nevertheless, the
general relationship regarding how the required length of the whitening
filter varies with the dispersion length, number of interferers, and order
of diversity, should remain unchanged for any given SNR.

V. NUMERICAL RESULTS

We now study the effect of thermal noise on the required filter span
of DFE and LE receivers. As discussed earlier, we expect the required
filter span of a MLSE receiver to be the same as that of a DFE receiver
(although this needs to be proven for all given SNR’s). For the purpose
of illustration, we assume a single-carrier system using quaternary
phase shift keying (QPSK) with Nyquist filtering. We also assume a
multi-ray delay profile for all the channels, where all the rays are of
equal power, independently Rayleigh faded, and uniformly spaced by an
interval T (the symbol period). The fading is assumed to be independent
for different signal sources and diversity branches. We only consider the
case of M2>L+1,ie., the receiver has a sufficient number of anten-
nas to suppress all dominant interferers (the remaining interference can
be treated as Gaussian noise if its total energy is sufficiently low). The
performance is given in terms of the average bit error rate (BER) over
Rayleigh fading, where the fading of individual channels was generated
by Monte-Carlo simulation.

In Figs. 5 to 8, we plot the average BER as a function of the length
(the number of symbol-spaced taps) of the causal and/or anticausal por-
tion of the filter on each diversity branch. The total filter length is
C+A+ 1, where C and A are the length of the causal and anticausal
portions, respectively, as defined earlier. In all the figures, the BER is
shown to decrease with the filter length until it reaches an asymptotic
value (a “floor”). The arrows on the right side of each curve show the
corresponding infinite-length BER (due to an artifact of the computa-
tion, the infinite-length BER’s do not necessarily match the BER floors
exactly). The triangle symbol on each curve indicates the required filter
length to achieve “near-optimum” performance, where “near-optimum”
is defined here as being within 5% of the BER floor. We assume in all
the DFE results (Figs. 5 to 7) that the feedback filter is sufficiently long
such that it completely cancels the postcursor ISI of the desired signal.

Fig. 5 shows the effect of the average input SNR 7y (the average is
over Rayleigh fading) on the required filter length of the DFE receiver,
assuming a 4-ray channel model (K = 3) with no CCI (L =0). In this
case, the optimum feedforward filter is anticausal (see (47)), so the per-
formance is given only as a function of A. The results for M =1 show
that the required filter length to achieve near-optimum performance
increases by one for every 3 dB increase in SNR in most cases (the
required length stays unchanged when 7y increases from 15 dB to 18
dB). We will discuss this relationship in more detail later. The example
results for M = 2 and M = 4 show that the required filter length does not
change with the number of diversity antennas.

Fig. 6 shows results with different dispersion lengths, assuming
L=1,M=2,and y = 18 dB. The performance is given as a function of
the lengths of both the causal and anticausal portions of the filter; the
results for each portion are obtained by assuming a sufficient length for
the other portion. These results show an approximately proportional
relationship between the required filter length and the channel disper-
sion length:

C=18K
A=46K

Fig. 7 shows results for different values of L, assuming a 4-ray
channel model (K = 3) with M =4 and Yy =9 dB. The average SIR is 0
dB, -3 dB, and —4.8 dB for L= 1, L =2, and L = 3, respectively. The
results show that the required filter length grows linearly with the num-
ber of interferers.

So far, all the simulation results generally agree with the analytical
results in (47), i.e., the required filter length to achieve near-optimum
performance grows linearly with X and L, but it does not depend on M.
In addition, we found in this section that the required filter length grows

forL=1,M=2,and y =18dB (53)

Bit Error Rate

10 L E
0 5 10 15 20 25

Filter Length A
Fig. 5. Effect of SNR ‘? on the required filter length of a space-time MMSE-DFE. L = 0.
4-ray channel (K =3)

Bit Error Rate

&-Ray (K=5)

0 5 10 15 20 25 3D
Filter Length Aand C

Fig. 6. Effect of channel dispersion length K on the required filter length of a space-time
MMSE-DFE. L=1,M=2,and ¥ =18dB

1

10"

Bit Error Rate
8&)

6 LT .
0 5 10 15 20 25
Filter Length Aand C

Fig. 7. Effect of the number of interferers L on the required filter length cf a space-time
MMSE-DFE. M=4,K=3,and Y =9dB

almost linearly with the average input SNR in dB. Combining these
results together, and taking into account the fact that the articausal part
of the filter always includes a matched filter of length K, we obtain the
following empirical formulae for the required filter length:
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C=KLo(Y) (54)
A=K+K(L+1)o(v)
where _ ,;

_ oY) = 15 €5)
and vy is in dB. The good agreement between the filter lengths pre-
dicted by (54) and the simulation results are shown in Tables I to III.
Although not shown here, we also found good agreement when testing
the empirical formulae against simulation results withother sets of
parameter values.

DFE:

TABLEI:
REQUIRED FILTER LENGTH RESULTS IN FIG. 5, COMPARED
WITH PREDICTED LENGTHS BASED ON (54) (SHOWN IN
PARENTHESES). L=0,M =4, AnDK =3,

¥ indB 3 6 9 12 15 18
A 439 548 667 166  8(15)  8(84)
TABLE IL

REQUIRED FILTER LENGTH RESULTS IN FIG. 6, COMPARED
WITH PREDICTED LENGTHS BASED ON (54) (SHOWN IN
PARENTHESES). L=1,M =2, aND \‘( =18 dB.

K=1 K=3 K=5
C 2(1.8) 5(54) 9(9)
A 5(4.6) 14 (13.8) 23(23)
TABLE III:

REQUIRED FILTER LENGTH RESULTS IN FiG. 6, COMPARED
WITH PREDICTED LENGTHS BASED ON (54) (SHOWN IN
PARENTHESES). L=1,M =2, anD ; =18 dB.

K=1 K=3 K=5
(o 2(1.8) 554 99
A 5(4.6) 14 (13.8) 23(23)

Despite its empirical nature, (54) has meaningful analytical justifi-
cations: First, it gives the same form of expression for C as the analyti-
cal result in (47), except for the dependence on the SNR (which is also
expected of o in (47)). Second, when Y —°° such that 9( Y) >>1,
the expression for A in (54) becomes A — K (L + 1) ¢ ( v); thus, we
also obtain the same form of expression for A as (47). As discussed ear-
lier, (47) is also valid when y — oo. Finally, (54) gives the length A as
the sum of the matched filter length K and the length of the anticausal
portion of the whitening filter K (L+ 1) ¢ ( y) which decreases with
decreasing input SNR; this agrees with the intuition that the length of
the whitening filter should approach zero when thermal noise dominates
both CCI and ISI.

As for the LE receiver, the analytical results in (48) show that it has
the same anticausal length A as that of the DFE receiver, and its causal
length is given by C = A — K. Thus, we simply modify (54) as

LE: C=K({L+Do(y) (56)
A=K+K(L+1)o(7Y)
The required filter length results in Fig. 8 agree well with the lengths
predicted by the above empirical expressions.

Equations (54) and (56) give useful empirical expressions for pre-
dicting the required filter span of space-time DFE and LE receivers for a
given SNR. Although the empirical function ¢ ( y) is given in (55) only
for a specific channel model (Rayleigh fading and a uniform delay
spread profile), this function can be easily determined for other channel
environments, by studying only the single-antenna, no CCI perfor-
mance, similar to the way we determined ¢ ( y) from the results in

Bit Error Rate

- o
0 5 10 15 20 25 30 35

Filter Length Aand C

Fig. 8. Required filter length for space-time MMSE-LE. L=1,M =2, and ‘? =18 dB

Fig. 5 and Table L.

V1. CONCLUSION

In this paper, we studied optimum space-time equalization of dis-
persive fading channels with cochannel interference. We first presented
a unified analysis of optimum space-time equalizers, consisting of a lin-
ear filter on each antenna branch, followed by a DFE or MLSE. In this
analysis, we derived explicit expressions for the linear filter (e.g., (19),
(28), and (38)), which are novel to the best of our knowledge. Using z-
transform analysis, we also derived expressions for the linear filter
length, showing that the required span is proportional to the channel dis-
persion length and the number of interferers. We then used computer
simulation to derive empirical expressions for the required filter span
which show that the span is also proportional to the input SNR in dB.
The derived empirical expressions for the required span are in good
agreement with simulation results with Rayleigh fading and a uniform
delay spread profile. These expressions are useful in the design of prac-
tical, near-optimum space-time equalizers.
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