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Abstract—This paper presents upper bounds on the bit-error Antenna 1

rate (BER) of optimum combining in wireless systems with

multiple cochannel interferers in a Rayleigh fading environment. Y xi(k) 7w

We present closed-form expressions for the upper bound on Use\

the bit-error rate with optimum combining, for any number of YAntennaZ Output
antennas and interferers, with coherent detection of BPSK and

QAM signals, and differential detection of DPSK. We also present : Xalk) 7w Signal

bounds on the performance gain of optimum combining over
maximal ratio combining. These bounds are asymptotically tight Antenna M
with decreasing BER, and results show that the asymptotic gain (K

is within 2 dB of the gain as determined by computer simulation

for a variety of cases at al0~® BER. The closed-form expressions Fig. 1. Block diagram of an/-element adaptive array.

for the bound permit rapid calculation of the improvement with

optimum combining for any number of interferers and antennas, . . .

as compared with the CPU hours previously required by Monte €ases, and detailed comparisons (e.g., in terms of outage
Carlo simulation. Thus these bounds allow calculation of the probability) have not been done.

performance of optimum combining under a variety of conditions In [6], we showed that, withd/ antenna elements, the

where it was not possible previously, including analysis of the recejyed signals can be combined to eliminatdL < M)
outage probability with shadow fading and the combined effect . terf in th tout si | whil btaini ad — L
of adaptive arrays and dynamic channel assignment in mobile |n_ er e.rer.s IStESou pg signal while obtaining o .
radio systems. diversity improvement, i.e., the performance of maximal ratio

combining withAZ — I. antennas and no interference. However,
this “zero-forcing” solution gives far lower output SINR than
optimum combining in most cases of interest and cannot be
used whenL > M.

I. INTRODUCTION In this paper we present a closed-form expression for the up-

NTENNA arrays with optimum combining combat multi-Per bound on the bit-error rate (BER) with optimum combining
A path fading of the desired signal and suppress interferiffywireless systems. We assume flat fading across the channel
signals, thereby increasing both the performance and capa&fg independent Rayleigh fading of the desired and interfering
of wireless systems. With optimum combining, the receivegignals at each antenfiaEquations are presented for the
signals are weighted and combined to maximize the signal-teper bound on the BER for coherent detection of quadrature
interference-plus-noise ratio (SINR) at the receiver. Optimuginplitude modulated (QAM) and binary phase-shift-keyed
Combining y|e|ds Superior performance over maximal ran(BPSK) SignalS, and for differential detection of differential
combining, whereby the signals are combined to maximihase-shift-keyed (DPSK) signals. From these equations, a
signal-to-noise ratio, in interference-limited systems. Howevd@wer bound on the improvement of optimum combining over
while with maximal ratio combining the bit-error rate carMaximal ratio combining is derived.
be expressed in closed form [1], with optimum combining In Section Il we derive the upper bound on the BER. In
a closed-form expression is available only with one interfer&ection Ill we compare the upper bound to Monte Carlo
[2], [3]. With multiple interferers, Monte Carlo simulation hassimulation results. A summary and conclusions are presented
been used [3]-[5], but this requires on the order of CPU houfs Section 1V.
even with just a few interferers. Thus the improvement of
optimum combining has only been studied for a few simple Il. UPPER BOUND DERIVATION

Fig. 1 shows a block diagram of al/-element adaptive

) . ) __array. The complex baseband signal received by dthe
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With optimum combining, the weights are chosen to maxthe bound. Also, note that with only noise at the receiver,
mize the output SINR, which also minimizes the mean-squakg = o2, whereo? is the variance of the noise normalized to

error (MSE), which is given by [8] the received desired signal power, and from (4) and (5)
MSE = (1 + w R, uy) ™t (1) p @M _ 1 ©)
€ = 2 2p1\4

where R,,,, is the received interference-plus-noise correlati

o %herep is the received SINR, while the actual BER is
matrix given by

1/2(1 + p)™ [1]. Thus even without interference, the bound

) L ; differs from the actual BER, and this difference increases as
R, =01+ Z UjU; (2)  the received SINR decreases.
J=t Let us consider the case of interference only. In this case,

o2 is the noise power] is the identity matrix,u; and |Bnn|. Whichis given by (2), may also be expressed as
u; are the des_ired angth interfering _signal propagation IR,.,| = |QTQ| :Z iDiDmngsz---DijmM 7)
vectors, respectively, and the superscripienotes complex
conjugate transpose. Here we have assumed the same avemigge @ = (D1, -+, Dy), Dy = ((u1)m - (wp)m)?,
received power for the desired signal at each antenna (th@}),, is the mth element ofu;, the sum is extended over
is, microdiversity rather than macrodiversity) and that thell A/! permutations of theD,,’s, D,,, is theith element of
noise and interfering signals are uncorrelated, and withahe permutation of thd,,’s, the “+” sign is assigned for even
loss of generality, have normalized the received signal powggrmutations (i.e., an even number of swappingDpf’s in
averaged over the fading, th Note that the MSE varies atthe permutation), and the- sign for odd permutations. Now
the fading rate. L

For coherent detection of BPSK or QAM, the BER is E[D! D,,| = Z o2 (8)
bounded by [9] =

P. < (/70 E[C(—l/MSE)} - C((l/of)—l)E[C—ulRJiud} whereo? is the average power of thih interferer normalized
3) to the desired signal power, and
L
where now the expected value is taken over the fading E[Df,,,D,,,DI,,Dm] =Z af 9)
parameters of the desired and interfering signals,«nig the j=1
variance of the BPSK or QAM symbol levels (e.g2 = 1 Similarly, from (7), it can be shown that
and 2 for BPSK and quaternary phase-shift keying (QPSK), M-S i 1
respectively). For differential detection of DPSK, assuming : o0 L ) * 0
Gaussian noise and interfererictse BER is given by [1]  E[1Q'QI1=Y_ o[> o7 > ot
q j=1 j=1
P = 3 Blevitin). (4) b
2 9
. 12 P
Thus the BER expression for both cases differs only by a Z % (10)

B[eiRin] < B =E[|Rw|]  (5)

constant, and we will now consider the terB{e—"«TiR;i“d . .]=1 o ‘
As shown in the Appendix, this term can be upper-bounded ¥jpere the sum is over all sets of positive integarsand /x
u that exist such thads > --- > 49 > 41, with 3~ 4xlp < M.
H A\ For example, wherd/ = 5, there are 6 sets dfiy, I, } such
et ™ that >, il < M (see Table I). All sets are of the form
) ) {i1, 1}, e.9.,{t1 = 3,11 = 1} for 3-1 < 5, except for the
where|R,,,| denotes the determinant @t,.,, and A, is the getfj =2 1, = 1,4y, = 3,1, = 1} for2-1+3-1 = 5.
nth _elgenva_lue OfR""'. o . §M> is an integer coefficient corresponding to thh set
Since (5) is the key inequality in our bound (and is the only: (M) . : .
. . ) L ; : \¥/lth M antennas. Note thai, ' is obtained by summing the
inequality we use in determining the bound for differentia fici ') for simil nElO (M)
detection of DPSK), let us examine its accuracy. The boufd® |C|ent§ £1's) for similar terms inE[|Q"Q|]. o, can
is tight if A, < 1, and since the),’s are proportional € determined as shown belcz\J/\\g.) ‘
to the interference signal powers, the bound is tight for SiNC€>_j_; oF =1/p, anday ™" =1 whenp_, iy = 0,
large received SINR, i.e., low BER’s. Although for all casebl0) can also be expressed as

(1 +(1/X.))" ! < 1 and thus BER< 0.5, for A, > 1 . L
the BER as given by the bound may exceded. Thus with Elof — M|y o) o 2Yin
small received SINR, occasionally BER’s greater thanmay le'ell=r zq: ¢ ;(p 7

be averaged into the average BER, reducing the tightness of
123

2Since the stronger the interference, the more that optimum combining L ovi
suppresses it, with the Gaussian assumption we overestimate the probability . Z(pa,») 2 s (11)
of strong interference. Note that this is consistent with the derivation of an

upper bound on the BER.
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TABLE | ABLE I
VALUES OF ag“) FORM = 27105 VaLUEs oF o) For M = 6 anp 7
M il l] i2 12 (X,S]M) M 1] ll i2 lz (XEIM)
2 2 1 -1 6 2 1 -15
2 2 +45
3 2 1 -3 2 3 -15
3 1 +2 3 1 +40
3 2 +40
4 2 1 -6 4 1 -90
2 ) +3 5 1 +144
301 +8 6 | 1 -120
4 |1 6 2 |1 ]3| 1| -120
2 1 4 1 +90

5 2 1 -10
2 2 +15 71201 -21
2 01| 3|1 ]| 20 23 -105
4 1 230 3 1 +70
5 1 +24 3 2 +280
4 1 -210
5 1 +504
6 1 -840
where nowM > --- > i > i1 > 1. 7 1 +720
To determine thex(™’s, first note that ifof = 0% j = 2 1 )3 | 1| 420
1,--+, L then) 7 | o?* = Lo, and (11) becomes g } ‘51 i “_Lsﬁgf
M 3 1 4 1 -420
E[1Q'Q|] = <LM +> ﬁkLM—’““)aW (12) 2 | 2 [ 3114210
k=2

where thef,’'s and theoch)’s can be seen to be closely

related. From [6],P. = 0 for L < M, and thus the
fGi's are the coefficients of thé/th-order polynomial inZ,
L(L - 1)(L—-2)---(L —M 4+ 1). This result is not only

and from (4), the upper bound on the BER with differential
detection of DPSK is given by

useful when all interferers have equal power, but also serves L L

) (Mo 1 i
as a consistency C?}S();k on our calculated vgluasq@ﬁ‘ : P < 5P M4 Z a((]]\l) Z(pgjz)zl

The values ofag ' were generated using a computer p =t
program to examine every permutation in (7) for given The
. . 5
number of each type @i, {1, iz, I3, - - - term was calculated to L
ey (M) ; _ . (po?)® (14)

determiney,; ‘. Tables I and Il list these values faf = 2—-7. pI; .
Note that onlyi; andl; terms exist forM < 4, andis and j=1

I, terms also exist fos < M. Values fora™ for higher o _ .
M can also be easily calculated. However, since the amoun{:orthe case of noise with interferers, consider the noise as

of computer time to generate the valuesmff”) increases an infinite number of weak interferers with total power equal

exponentially withAZ, our program could only generate theséo the noise. That is, let
values in a reasonable amount of computer time for up to 5 o2 )
M = 10 (where a hundred CPU hours on a SPARCstation20 % T K _I j=L+1, - K, (15)
would be required).

From (3), the upper bound on the BER with coheremnd letK — co. Then,p = (3%, 02 + 02)~%, and

detection of BPSK or QAM is now given by

lk lk
I Ko Lo
L ) lim s = S 16
Po< eMoD=0,mM 1157 ol [ 3 (po?)i i ; 0; ; 0; (16)
q J=1
I for iy, > 1. Therefore, with noise, the BER bound is the same
L 2Ny 13 as in (13) and (14), but witlp including the noise. In this

Z(p(’j) (13) case, if we define the received desired signal-to-noise ratio

3=t asy = 02 and thejth interferer signal-to-noise ratio as
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I'j = 07 /0?, then (14) becomes [similarly for (13)] 10
i\ O L5
L 1 s
P<— |1+ Yooy _ L 8- e T1=10d8
= 2pM q ' EL T +1 I
q j=1 j=1"1J L Coherent .
Asympiotic Detection /7
I i I sl Gain of BPSK /7
Fj = L=1 /o
Serioy) | ] an E
j=1 Ej:l I'j+1 = M=2
G 41 .’_,‘ =10dB
. . . . . - Symptotic v
Since ;4 is the bound with maximal ratio combining, the e SN oo T'=3dB
term in the brackets is the improvement of optimum combining 5 _ASQF;;O“C P
over maximal ratio combining based on the BER bound. s
Defining the gain of optimum combining as the reduction in Asymptotic ri=3dB
the requirecp for a given BER, from (17), this gain in decibels 0 Gﬁ"” G
is given by 10° 107 10° 10° 10" 5
BER
Gain (dB) 1, Fig.2. Gain versus BER for coherent detection of BPSK—comparison of
10 Z o ET: I 1 analytical results to the asymptotic gain.
=——log 1+ alM .
M 10 q L ]
q j=1 Zj:l Lj+1 12
i\ 2
L T. 2 ===== Theoretical Results
Z Lif . (18) 10 [= | === Simulation Results ,./
= Zj:l Fj +1 — Asymptotic Gain L=t /*
M=2

This gain is therefore independent of the desired signal
power (because the bound is asymptotically tighpas ~c).
However, this is the gain of the BER bound with optimum
combining over the BER bound with maximal ratio combining.
Since the requireg for a given BER with maximal ratio
combining is less than the bound, the true gain may differ
from (18) and to obtain a bound on the gain, the gain in (18)
must be reduced accordingly. For example, with differential
detection of DPSK, to obtain a bound the gain given in (18)
is reduced by the factdip/(1 + p))*. Note that agp — oo,
this factor reduces to one and the gain approaches (18). Thus
we will refer to (18) as the asymptotic gain.

Gain (dB)

Fig. 3. Gain withM = 2 for 1, 2, and 6 equal-power interferers versus
signal-to-noise ratio of each interferer—comparison of analytical and Monte

I1l. COMPARISON TO EXACT THEORY AND SIMULATION Carlo simulation results with coherent detection of BPSK [5] to the asymptotic

ain.

In this section, we compare the bound to theoretical resu?ts
for L = 1 and simulation results fof. > 2. ] .

Fig. 2 compares theoretical results (from [1][3]) for th&t & 10~ BER? In all cases, the asymptotic gain has the
gain to the asymptotic gain (18) versus BER with coherefigMe shape as the gain and is within 1.7 dB for= 1,
detection of BPSK. Results are generated fér= 2 and5, 1.0 dB forL =2, and 0.4 dB forL = 6. Since optimum
andI'; = 3 and 10 dB. In all cases the gain monotonically dé_:_ombmmg g|ves_the Iargest gain when the mterfergnce power
creases to the asymptotic gain as the BER decreases. The faffpncentrated in one interferer and the least gain when the
approaches the asymptotic gain more slowly with decreasiw@erference power is equally divided among many interferers,
BER for largerM and also, at low BER’s, the accuracy of thd = 1 and L = 6 represent the best and worst cases for the
asymptotic gain decreases with highigr. Thus the accuracy 9&in in an mterference-llmlted cellular system. Thus f_rom the
of the asymptotic gain decreases as ghequired for a given re_suilts in Fig. 3, we would expect_the asymptotic gain to be
BER with optimum combining decreases, as predicted by t}dthin 0.4—.1.7 dB of the actual gain for all cases in cellular
approximation in Section 1. systems withM = 2.

Fig. 3 compares theoretical and Monte Carlo simulation [5]

results for the gain to the asymptotic gain withi = 2 and
9 ymp 9 3This BER was used because the results in [5] were obtained for this BER.

L =1, 2, and 6. Results are plotted versls, whgre allL a5 shown in [5], the gain does not change significantly for BER's between
interferers have equal power, for coherent detection of BPSK=2 and10—3, the range of interest in most mobile radio systems.
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6 of cases at a I® BER. These cases include interference
= === Simulation Results scenarios that cover the range of worst to best cases for the
= Asymptotic Gain L=2 Lee gain of optimum combining in cellular systems witd = 2.

BER=10? e The bound is most accurate with differential detection of
Tj=1,1)=3d8 ofomT ] DPSK and high SINR, corresponding to low BER and a

few antennas. Because of the 2-dB accuracy, the bound is
most useful where the optimum combining improvement is
the largest, which is the case of most interest. The closed-
form expression for the bound permits rapid calculation of
the improvement with optimum combining for any number
of interferers and antennas, as compared with the CPU hours
previously required by Monte Carlo simulation. These bounds
allow calculation of the performance of optimum combining
under a variety of conditions where it was not possible
previously, including analysis of the outage probability with

2 3 4 5 6 7 shadow fading and the combined effect of adaptive arrays and

M dynamic channel assignment in mobile radio systems.

Fig. 4. Gain versus M with two and six equal power interfer-

ers—comparison of Monte Carlo simulation results with coherent detection
of BPSK [3] to the asymptotic gain. APPENDIX

DiagonalizingR,,,, by a unitary transformatio, we obtain

Now, consider the lower bound on the gain obtained from
the BER bound (17), as compared to the asymptotic gain.
Without interference, differential detection of DPSK with here diae () denot M ox M trix  with
maximal ratio combining and/ = 2 requiresp ~ 13.3 dB where diag (:) denotes anii x matrix with -honzero
(theoretically [10]) for al0—3 BER, while the BER bound S/€MeNts only on the diagonal, or
(17) givesp = 13.5 dB. Thus the lower bound on the gain -1 _ .1 Y
(from (17)) at a 102 BER is 0.2 dB less than the asymptotic R, =9l diag (009, (20)
gain for any interference scenario—in particular, the low&"
bound on the gain is 0.2 dB less than the results shown in wi Ry rug =y’ diag (A1 A3 g (21)
Fig. 3. Similarly, coherent detection of BPSK with maximal
ratio combining and\/ = 2 requiresp ~ 11.1 dB for a 10® Let
BER, while the BER bound (13) gives 15.0 dB. Thus the

R, ='diag (A Ay)v) (19)

bound is most accurate with differential detection of DPSK C=lcr-eul’ =duq (22)
and low BER's.
Fig. 4 compares Monte Carlo simulation results [3] for th&hen
gain to the asymptotic gain fdr = 2 and6. Results are plotted M )
versusM with I'; = 3 dB for all interferers and coherent wlR g = Z |cnl (23)

detection of BPSK at a I¢ BER. Again the asymptotic

gain has the same shape as the simulation results. The cagsgep

include both many more interferers than antennas and many -

more antennas than interferers, but in all cases the asymptotic E[e %R = F
gain is within 1.8 dB of simulation results.

IV. CONCLUSIONS

M |C |2
In this paper we have presented upper bounds on the bit-

error rate (BER) of optimum combining in wireless syste Since with independent, Rayleigh fading at each antenna,
. : Pur ning . SYSTMPe elements ofi, are independent and identically distributed
with multiple cochannel interferers in a Rayleigh fading envi-

. i.i.d.) complex Gaussian random variables, the elements of
ronment. We presented closed-form expressions for the uppér

. . . S are also i.i.d. complex Gaussian random variables with the
bound on the bit-error rate with optimum combining, for any : .

. : . e mean and variance. Furthermore, Xhs are indepen-
number of antennas and interferers, with coherent detection efnt of thee.’s. Thus we can average over the desired and
BPSK and QAM signals, and differential detection of DPS Ny 9

We also presented bounds on the performance gain of optimhnr%erfermg signal vectors separately, i.e.,

combining over maximal ratio combining and showed that [ 2 M 2
these bounds are asymptotically tight with decreasing BERE[H exp <_|Cn| ) — B\ H E.. [exp <_ |cn | )H
Results showed that the asymptotic gain is within 2 dB of |.=1 An n=1 An
the gain as determined by computer simulation for a variety (25)
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Since thec,,’s are complex Gaussian random variables withi7] J. Salz and J. H. Winters, “Effect of fading correlation on adaptive arrays
zero mean and unit variance in digital wireless communications|EEE Trans. Veh. Technolol. 43,
pp. 1049-1057, Nov. 1994.
|cn|2 1 [8] R. A. Monzingo and T. W. Miller,Introduction to Adaptive Arrays.
E., |exp | — \ = 1+ L (26) New York: Wiley, 1980.
n An [9] G. J. Foschini and J. Salz, “Digital communications over fading radio
and channels,”Bell Syst. Tech. Jvol. 62, pp. 429-456, Feb. 1983.
M [10] J. H. Winters, “Switched diversity with feedback for DPSK mobile radio
E[efujiR;iud] = E\ H 1 . (@7 systems,”|IEEE Trans. Veh. Technolvol. VT-32, pp. 134-150, Feb.
14+ )il 1983.

n=1

Since the)\,;’s are nonnegative

1 <\ (28) Jack H. Winters (S'77-M'81-SM’'88-F'96) received the B.S.E.E. degree
1+ 1 ="n from the University of Cincinnati, Cincinnati, OH, in 1977 and the M.S. and
An the Ph.D. degrees in electrical engineering from The Ohio State University,
Columbus, in 1978 and 1981, respectively.
and, therefore, He has been with AT&T Bell Laboratories, now AT&T Labs—Research,
M since 1981, where he is in the Wireless Systems Research Department. He has
P - . ; ; ) h " h
—u R Sua] « — studied signal processing techniques for increasing the capacity and reducing
E[C ] < Ex H An E)‘[ |R""|] (29) signal distortion in fiber optic, mobile radio, and indoor radio systems, and
n=1 is currently studying adaptive arrays and equalization for indoor and mobile

. radio.
where |R,,,,| denotes the determinant &,,,.. Dr. Winters is a member of Sigma Xi.
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