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Abstract

In this paper we Investigate the effect of correlations among
the fading signals at the antenna elements of an adaptlve
array In a digital wireless communication system. With an
adaptive array, the signals recelved by multiple antennas
are optimally weighted and combined to suppress
interference and combat desired signal fading. Previous
results for flat and frequency-selective fading assumed
independent fading at each antenna. Here, we present a
model of local scattering where the recelved multipath
signals arrive within a given beamwldth and derlve a
closed-form expression for the correlation as a functlon of
antenna spacing. Results show that the degradatlon in
performance with correlation In an adaptive array that
combats fading and suppresses Interference Is only slightly
larger than that for combating fading alone, le., with
maximal ratlo combining. This degradation Is small even
with correlation as high as 0.5.

1. INTRODUCTION

Antenna arrays with optimum combining combat multipath fading
of the desired signal and suppress interfering signals, thereby
increasing both the performance and capacity of wireless systems.
This increase is reduced, however, by correlation of the fading
signals between the received antennas.

Previous theoretical and computer simulation studies of optimum
combining (e.g., [1-6]) assumed independent fading of the desired
and interfering signals at each receive antenna. Such independence
occurs if multipath reflections are uniformly distributed around
receive antennas that are spaced at least a half wavelength apart.
However, the signals often arrive at the receive antennas mainly
from a given direction. For example, in rural or suburban mobile
radio, a high base station antenna typically has a line-of-sight to
within the vicinity of the mobile, with local scattering around the
mobile generating signals that arrive mainly within a given range of
angles or beamwidth. This problem was studied in (7], where
theoretical and experimental results showed the relationship of
angle of arrival and beamwidth with the correlation of fading
between antennas. Specifically, as the angle of arrival approaches
end-fire (parallel to the array) and the beamwidth decreases, the
antenna spacing must be increased to reduce correlation. When this
correlation is high (>0.8), because the signals at the antennas tend
to fade at the same time, the diversity benefit of antenna arrays
against fading (i.e., with maximal ratio combining) is significantly
reduced [8]. On the other hand, because independent fading is not
required for interference suppression, antenna arrays can suppress
interference even with complete correlation (=1). In particular,
theoretical and computer simulation results [1,3,4,9,10] have shown
that with M antennas, M -1 interferers can be completely
suppressed in both fading (with zero correlation) and nonfading
(with complete correlation) environments. Thus, we need to
understand the antenna array performance with joint fading
reduction and interference suppression. In addition, the effect of
correlation with frequency-selective fading, when equalization is also
used, must be evaluated.

This paper considers the effect of correlation of the signal fading at
the antennas of an adaptive array with optimum combining, to
combat desired signal fading and suppress interference, and
optimum linear equalization, to combat frequency-selective fading.
We first present a model of local scattering where the received
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multipath signals arrive within a given beamwidth. We derive a
closed-form expression for the fading correlation with this model as
a function of the angle of arrival, beamwidth, and antennz spacing.
Using these theoretical results with Monte Carlo simulation, we
then generate results for the effect of beamwidth (i.e., correlation)
on the adaptive array performance with given antenna spacing and
random angles of arrival. Results are presented for optimum
combining with flat fading as well as for frequency-selective fading,
using a two-delay spread model, with joint optimum combining and
linear equalization. Computer simulation results show that the
degradation in performance with correlation in an adaptive array
that combats fading and suppresses interference is slightly larger
than that for combating fading alone, i.e., with maximal ratio
combining. This degradation is small even with correlation as high
as 0.5. Results for an adaptive array with either flat-Rayleigh
fading or frequency-selective fading show that with an antenna
spacing of 4 wavelengths, there is little performance degradation as
long as the beamwidth of the received signals is greater than 20°.
Further increases in antenna spacing would reduce this beamwidth
even more.

In Section II we describe optimum combining and equalization with
antenna arrays and discuss how fading correlation can occur. The
model and theoretical analysis of wireless systems with fading
correlation is presented in Section III. In Section IV we describe the
computer simulation technique and present results on the
performance degradation with correlation. A summary and
conclusions are presented in Section V.

2. BACKGROUND

Figure 1 shows a digital wireless communication system employing
adaptive arrays, where a base with M antennas receives signals from
N users. These N users operate in the same bandwidth
simultaneously and include signals destined to the base as well as
those destined to other bases, but interfering with the desired
signals, as in cellular systems.
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Figure1 Wireless communication system employing adaptive

arrays, where a base with M antennas receives signals
from N users.

Let the complex channel transfer function from user "i" to antenna
";" be denoted as c,j(w). Then the channel vector from user "i" to

the base antennas is Cyw) = je;(w) -+ c.M(w)] , Where the



superscript T denotes transpose, and the MX N channel matrix
between the /N users and the base is given by

ow) = [e(w) -+~ Cnw)] - )

In this paper, we are interested in linear processing at the base
station of the M received signals to generate an output signal that
corresponds to the data from one desired signal (user 1)
Specifically, we consider ideal optimum combining and linear
equalization, where the M received signals are combined to minimize
the mean-square error (MSE} in the output. For ideal linear
equalization we consider a synchronous tapped delay line with an
infinite number of taps, as shown in Figure 1. This equalizer is the
optimum linear equalizer under the assumption that the desired
signal spectrum is bandwidth-limited to the data rate (1/7). As
shown before (1], with ideal optimum combining and linear
equalization, the minimum MSE for user "1" for given C(w) is given
by

x/T
T -1
MSE[C| = 03‘2‘; f [I + pC'(w)C(w)]“ dw ,  (2)
~%x/T

where [1s an NX N identity matrix, p is the signal-to-noise ratio,

and o2 = E[l a,,lj where the a,'s are the complex data symbols.

The superscript t denotes complex conjugate transpose, and | |1;'
stands for the "1 1" component of the inverse of a matrix. The
error rate can then be upper bounded by

(3)

_ 2
P, < E¢lexp [._ M] ,

MSE[ ]

where Ec|]| is the expected value with respect to the channel
matrices.

With multipath, the ¢ (w)'s are modeled as complex Gaussian
random variables at each frequency w. The variation of c,,(w) with
w depends on the delay-spread model of the channel. In this paper,
we examine numerically two such models: 1) flat fading, i.e.,
cy(w) = ¢, for all w, where equalization is not needed, and 2) a
two-path delay spread model,

"u(w) - C}](w] + c?](“)e_]ufl

(4)

where 7, is the time delay between the two paths for the sth user
and r:.‘J and cj; are complex Gaussian random variables, and the
fading in the two paths with different time delays is independent,
i.e, cl is independent of c¢? (but the c,’s are not necessarily
independent).

Previous papers have assumed that the ¢,'s are independent. Such
independence occurs if multipath reflections are uniformly
distributed around the receive antennas that are spaced at least a
half wavelength apart (this situation is examined in detail below)
However, the signals often arrive at the receive antennas mainly
from a given direction. For example, in rural or suburban mobile
radio, a high base station antenna typically has a line-of-sight to
within the vicinity of the mobile, with local scattering around the
mobile generating signals that arrive mainly within a given range of
angles or beamwidth. Figure 2 shows a typical scenario, where all
signals from a mobile arrive at the base station within £ A at angle
¢. This problem was studied in [7|, where theoretical and
experimental results showed the relationship of angle of arrival and
beamwidth with the correlation of fading between antennas.
Specificaily, |7] assumed that the probability density function for
the angle of arrival of the ith ray is given by

1769

p8) = Leoar(p-¢) - Z+9<p<Trs  (9)

where n is an even integer chosen to determine the beamwidth and
Q is a normalizing constant chosen to make p(¢;) s density
function. The correlation of the fading between two antennas
spaced D apart is then [7]

x/2+ ¢

f cos(22D/rsin(¢,— ¢))p(#:)dé,
—x/2+ ¢

R, = (6)

and

x/2+ ¢

g f sin(22D/Nsin(¢,— ¢))p(4,)ds,
—-x/2+ ¢

™

where A = w/(2n¢c), cis the speed of light, R,, is the correlation
between the real parts of ¢, and ¢y, and R,, is the correlation
between the real part of ¢, and the imaginary part of c.
Unfortunately, (8) and (7) must be evaluated numerieslly.
Therefore, in the next section we present a generic model, where the
probability density function of ¢, is assumed to be uniform,

1
24
0 elsewhere

—A+¢<¢. <A+ 4

P(¢|) - (8)

This allows for the derivation of a closed-form expression for the
correlation coefficient.
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Figure 2 Wireless environment where all signals from a mobile
arrive at the base station within & A of angle ¢.

8. CHANNEL MODEL

We develop a mathematical model for multipath media applicable in
wireless digital communications employing antenna array
processors. The model is useful for the evaluation of signal
correlations among the antenna array elements which are critically
important in determining ultimate system performance. The degree
of correlation depends on the element spacings and signal scattering
angles resulting from the physical surroundings.



The most fundamental description of a linear, quasi-stationary,
multipath medium in wireless systems employing antenna arrays is
the impulse response from user "i" to array element output ";."
Such a typical impulse response can be represented as the
superposition of a large number of impulses,

A(t) = Y a,8(t-1t,)

(@)

where the a,’s and the ¢,'s are the strengths and delays of the
possible paths. Clearly, in a time varying situation, these
parameters will depend on time. In a system of N users and M
antenna elements we must describe NX M such responses. Thus, if
the input to the medium of a typical user is s(f)e' ", where w, is
the angular carrier frequency, the output of a typical antenna
element becomes,

go(t) = ™' Y aga(t—t,)e” ot
"

(10)

Following the seminal work of Turin [11], the set of all t,'s is
partitioned into L disjoint sets Ay, ¢=1 - L. With each set A,
we associate a representative delay 7, such that ¢, e A, if
#(t—t,) & s(i—rg). In other words, the differences 7,— ¢, are
much smaller than the reciprocal bandwidth of &(¢).

With these approximations in mind, we rewrite (10)in the form

L
e-u,r E 8(‘—‘7[) E a‘e-vu,ln

fm ] ne

8,(f) = (1)

where ng is the set of integers such that f,eA,. Denoting
Y a,e” ' = b, and taking Fourier transforms of both sides of

g4
(11), we obtain the standard L-ray, or frequency-selective
multipath, description of fading channels,

L
S(w) = Sw.+w) ¥ b gtlwotwine

(12)
£=1
Thus a typical baseband-equivalent, frequency  transfer
characteristic from user "£" to antenna element ";” can be
represented in the form
L lwf?
tpw) = ¥ ¥ e k=1, N, j=1 M . (13)
(=1

For this model to be useful, a statistical characterization of the set
of MX N frequency functions cy(w) must be provided. In our
application we shall assume that the terms in the various sums
defining b¢’s are random quantities and so it is reasonable to assert
that the b¢’s are complex random variables. Furthermore, we
assume that there are large number of terms in each sum and that
each sum includes different random terms and consequently, the
be's, €m 1 - L, may be regarded as i.i.d. complex, zero-mean,
Gaussian random variables. If we let w,f, = #, in the sums
defining b4, we write the real and imaginary parts as

be= 3, a,,e—‘a" = Y a,cosb, + i), a,sind,
n¢ L¥4 ne

- z¢ + iye . (14)

Now, it is reasonable to regard 6, modulo 27 as i.i.d. uniformly
distributed random variables with the consequence that z, and y,
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are now independent and so | b¢| is Rayleigh distributed and /b, is
uniform. This is then the rationale for regarding cj(w)in (13) as a
complex Gaussian process in the frequency domain. For our
application the correlation among the elements of cy’s is of
paramount importance.

In order to facilitate the evaluation of these parameters, we must
return to the basic definition of the bg's in (14). We begin by
congidering the following geometrical model. This entails placing
the users and the antenna array in a reasonable geometrical
relationship. Without loss of generality assume that the antenna
array is linear with M elements with identical spacing, D, between
elements. We label the elements in ascending order. Users are
located at arbitrary angles and distances with respect to the
antenna array as depicted in Figure 2. With each user we associate
a scattering angle of size 2A. This implies that all subpaths from
the user to the antenna array are restricted to emanate from within
this angle.

We now derive the correlations among array elements for a single
user by assuming plane waves at the array. This is a reasonable
assumption when users and antenna array are separated by many
wavelengths.

Suppose the reference wavefront plane coincides with element 1 (see
Figure 2). Then the wave arriving at element 2 suffers a delay
relative to the first element,

T o= —';— sing, |¢] < 7 (15)
and (n—1)7at element "n".

Thus, if we denote the output signals at antenna elements "&" and
"j" by 8,¢(t) and s,,(t), respectively, due to the transmission of a
signal of the form, s(¢) e located at an angle ¢, we can write

L
fot, (1) = 0 T a(t— 1) bih)
=1

(16)

where

0= w,(a— 1)—?—sm Pn

o = Y ase o=l M
e

where ¢, is the angle of arrival of the nth ray.

As we have already argued, the b§®)'s are compiex i.i.d. Gaussian
random variables associated with array numbers a and therefore
the sought-after correlations are determined by each b4 and
different a’s. Thus we seek the correlation coefficients between the
following random variables,

B = o) + gl k=1, .. M

and
b = o) 4 ) =1, M
where
o = Re b (17)
and

vi® = Im 0 a = 1,2 ..M .

We note that since the 6,’s are i.i.d. uniform, the real and
imaginary parts of 6y* are independent for any a. We now



calculate for any a
2 2
B[] - )] - 2 5 £ o] . (18)
2 Py

It is now straightforward to calculate the four correlation
coefficients:

E[ #f) z&”] - E[ vt v(z”]

-1 Y E a?,cos[(k—j) 2r 2 gin ¢u] (19)
2 o A

and

E[ A9 )] = — & o) ]
- —;— Y E| 62 sin [(k—j) 2 -il sin ¢>,] (20)
ne

where

w,,% - 2nfa—€— - 21r—€

According to our hypothesis, there are a large number of terms in
the sums indicated in (19) and (20) and if we make the additional
physically-reasonable assumption that the #,'s are dense in the
range (¢ — A, ¢+ A), the sums can be expressed as integrals of the
form, independent of ¢,

Ru(k=j) = Ry(k=j) = E[ #a47] - E[ywyw] (21)

$+a 22D
22 () ain
- Lre [ oxge T T
-a

and

Roy (k=) = = Rys (k=3) = E[s89] = — E[ o 4t)]

$+a 22D
1 2 == (k=) en B
= m [ o%p)e B (22)
PN

where the density function of the returned strengths o%(¢) must
satisfy,

$+ A

% f 0%(8)dp — % gl E[a?,] . (23)
$— A

Making the reasonable assumption that this density function is a
constant over the angle segments, we then obtain the relationship

o=-ly E[ae] - %E[lbd?], for all ¢ (24)
L1

which is consistent with the definitions in (18). Now, by making use
of the well known series representations,

cos (z cos 8) = J,(z)+2 g: Jam(2) cos (2m8)
mow |

sin (zsin 8) = 2 E Jam+1(2) sin [(2m+ 1)6| (25)
0

mo-

where the J,'s are Bessel Functions of integer order and

D
s 2m (26)

we can integrate (21) and (22) and obtain the following convenient
formulas for the desired correlation coefficients,

Ryylk=4) = Ry(k-3j)

= J,(z(k=j))+2 El Jam(2(k = j)) cos(2mg) %‘%—“l (27)

and
k,’(k—j) - kyz(k—j)

= 2T James (k=) sin [(2me 1)g] SR (EREL) ()

meo (2m+1)a

where the normalized R's are defined as R = R/0%. 1t can be readily
checked that

R.(0) = R(0)

and
Ry (0) = R, (0) = 1,

as they must be for "physically consistent" considerations. Also
note that when A =,

Rulk=j) = Ry (k=) = J,(s(k= 7))
and

Roy(k=3) = Ry(k=j) = 0.

The implication of these results is that when reflections are allowed
to arrive at the antenna array from all directions, the correlation of
signals at adjacent antenna array elements is determined from

Jo(z)=0 which implies that = 2n -~ 2.4 or

Py
-€— ~ %‘— ~ .382. This sets the minimum spacings between

antenna elements yielding zero correlation.

At this stage, we have all the necessary ingredients to characterize
the correlation matrix of the channel transfer matrix C{w) with
MX N elements given in (13) and the overall channel matrix C(w)
expressed in terms of the M-column vectors by (1). Since each user
is characterized by its own surroundings, and if the users are not on
top of one another to within wavelengths, it is reasonable to assume
that the columns in (1) are statistically independent. Consequently,
we need only to characterize the correlation properties of a typical
user, which we have already accomplished.

Expressing the complex column vector Cy(w) = x4(w) + iy ;(w)
where x; and y, are the real and imaginary M-column vectors
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associated with user "k", we define the 2M augmented column
vector as

T
Ay = (zn Vi Zae Vie  TiM vw] (29)
and seek to evaluate the 2MX 2M correlation matrix
By = E[A,,Al], k=1, .. N. (30)
Defining the 2X 2 matrix
Ruli=i)  Rolli-i
D, = =(1—=7) ty” 1) ij= 1, M (31)

~Ray(li=1) Ryy(i=3)

where the entries are given in (27} and (28), it is easy to see that ;?1
can be represented in terms of these block 2 2 matrices as follows

Ioxo Dy Do - Dy
B D lox: Dy "Dy
&
— = 1DJ DT Ioxoe - Dy-2 (32)
4
.sz Dl Dl—a  loxo

where % is (24) with a subscript "&" denoting the k'* user. ((24)
applies to a typical user.) Clearly R is a Toeplitz matrix.

4. RESULTS
4.1 Correlation

Let us first consider the correlation as a function of the antenna
spacing D/, angle of arrival ¢, and beamwidth A. When the signal
arrives from broadside (¢=0 ), R, =0 for all D/\. Thus, the
envelope correlation, R=|R,,| +l1i',,,|2 is just |R.| R, versus
antenna spacing is shown in Figure 3 for
A= 180°,90", 40 °, 20 *, 10 *,and 3 *. These results agree with
results using the model of (7| with A equivalent to the 3 dB
beamw:dth of |7| The figure shows that, as A decreases, the first
zero in the correlation occurs at larger antenna spacing.
Specifically, the first zero-crossing occurs at D/x=30/A, with A in
degrees. Thus, these results depend mainly on D/X\/A, and show
that independent fading occurs when the antenna beamwidth from
two elements of the array is about the same as the beamwidth of the
arriving signal.

When the signal arrives from other than broadside, ¢ 0 *, the
antenny spacing for low correlation increases and the envelope
correlation is never zero. The worst case occurs when ¢=90 ",
where #,, and R,y oscillate with D /X, with the magnitude of the
oscillations in the correlation decreasing much more slowly with
antenna spacing at ¢ =90 " thanat ¢=0 ".

Figure 4 shows the antenna spacing required for the envelope
correlation to remain below 0.5 as a function of ¢ and A. The
required spacing is only a few wavelengths up to very small
beamwidths, unless ¢ is close to 90°.

Experimental measurements of the beamwidth in motile radio are
presented and discussed in [7,12|. These results show that, as
expected, the beamwidth decreases with the antenna height.
Fortunately, in most cases antenna spacings on the order of only
10X (several feet at 900 MHz) are required to obtain low correlation.

The effect of correlation on reducing the effectiveness of antenna
diversity against desired signal fading is shown in |8, p. 327|. With
maximal ratio combining and 2 antennas, small correlation (<0.3)
has a negligible effect on performance, and the degradation is small
unless the correlation is large { > 0.8).
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The effect of correlation on reducing the effectiveness of antenna
arrays against interference suppression is as follows. With M
antenna elements, the array has M — 1 degrees of freedom. Thus, as
shown by theoretical and computer simulation results (1,3,4,9,10),
an M antenna element array can null out M — 1 interfering signals
independent of the fading correlation (i.e., with or without fading).

1

0.5

Rux

-1

DA

Figure 3 Correlation of the real portion of the fading versus
antenna spacing for ¢=0 °,
8

0 | ! | 1
90 80 60~ 40 20 Y]
A (Degrees)
Figure 4 Antenna spacing required for the envelope correlation to
remain below 0.5 as a function of ¢ and A.

The only factor that changes with the environment is the required
spatial separation of the interfering signals: without fading the
signals must be separated from the desired signal by the antenna
beamwidth, while with fading (with A = 180 *) the signals need only
be separated by about half a wavelength. Note that spacing the



receive antennas at greater than ) /2 decreases the beamwidth of the
array, but also creates grating nulls - the antenna pattern repeats
every 60 ‘/(D/\). Thus, large antenns spacing to reduce fading
correlation causes the array to be unable to always null interference
separated by more than a beamwidth from the desired signal, but
the fading multipath allows for the suppression of interference
within the besmwidth. Thus, as the signal beamwidth decreases
(i.e., as the correlation increases), the effectiveness of adaptive
arrays to suppress interference alone doesn’t change, but the
effectiveness against fading does.

4.2 Performance with Fading and Interference

The effect of correlation on an adaptive array that jointly
suppresses interference and reduces fading effects was determined in
the following manner. For fixed D/ and the same fixed A for the
desired and interfering signals, we use Monte Carlo simulation to
derive 10,000 channel matrices C with random ¢ and lading and
then calculate the performance averaged over these matrices (i.e., ¢
and fading). We assume that the users are randomly located
(separated by at least half a wavelength) and thus ¢ is an
independent random variable for each user with a uniform
probability density function. The performance measures we
consider are the average error rate, as well as the outage
probability, i.e., the probability that the error rate exceeds a given
value.

The error rate for a given ¢ and fading was calculated as follows.
For given ¢ for each user, 4, and D/x, the correlation matrix
R, /0% for each user was calculated using (32). To generate C, we
first generate a 2M vector A; for each user with each element ay,
being an independent, zero-mean Gaussian random variable with a
variance of 1/2. Thus,

T
Ap = [an'”au{] (33)
for the kth user. The kth column of C, Cy, is then
3%
Cim —— A, . (34)
51/2
Note that - is given by
VAN -0
R s
£ -z 0 Ao 0 2T , (35)
0 0 N

T
where z = [z, ce zzM] , and z, and X\, are the eigenvectors and

eigenvaiues of —;, respectively. For frequency-selective fading,
o

with two-path delay-spread (4), the above procedure was repeated
twice to obtain the ¢l's and ¢?’s. The MSE is then given by (2) and
the errcr rate by (3).

We first consider the effect of correlation with flat fading, two
receive antennas, and one interferer with the same power as the
desired signal. Figure 5 exhibits the average error rate versus A
with p= 18 dB and 27 dB, and D= 0.382\ and 3.82). Note that
D = 0.382) corresponds to zero correlation when the signal arrives
uniformly from all angles (A=180°). At D=0.382), the
performance is degraded slightly at A =900 ° and becomes much
worse with smaller A. However, at D= 3.82X, there is little
degradation until A is 10° to 20°. Thus, increasing the antenna
spacing by a factor of 10 decreases the tolerable A by about a factor
of 10 as well (corresponding to the decrease in antenna beamwidth
as discussed in Section 4.1). As shown in Figure 4, at 20° the
correlation is about 0.5 in the worst case of ¢ =90 *. Figure 5 also

§ |
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shows that the degradation with A is larger with higher p, but the
above conclusions are the same. Similar results were obtained for
the outage probability.

10"

Flat Fading
MaNa2

1 1 !
100 90
A (Degrees)

109
180

Figure 5 Average error rate versus A with flat fading and
M= Nu 2,

Figure 6 shows the outage probability versus A with flat fading,
N =1 equal-power interferers, and M= N+ 1. Results are shown
for the probability of exceeding a 10~ 2 error rate, with p= 17 dB,
and D= 0.382) and 3.82) as in Figure 5. As compared to Figure 5,

o
L]

Flat Fading

MuN+t1=21t04
p=17d8

Puu (P(BER>107))

02

0
008

180

4 (Degrees)

Figure 6 Outage probability versus A with flat fading and
M= N+ 1.

these results show that for D= 0.382\ correlation degrades the

performance more when there is an additional antenna. Additional

results we obtained for Mw N+ 2 and M= N+ 3 show that the

degradation with correlation grows even larger with more antennas.



In Figure 6, the M= 2 results are without interference and thus
correspond to the performance with maximal ratio combining. The
performance with D == 0.382X is seen to be degraded somewhat more
by correlation when interference must also be suppressed (i.e.,
M= 3 and 4 versus M = 2 results). However, in all cases when the
spacing is increased to D= 3.82), the performance remains constant
a8 long as A is greater than about 20°, i.e., the correlation is below
0.5.

Finally, we consider the effect of correlation with frequency-
selective fading, when joint optimum combining and equalization is
used. Figure 7 shows the average error rate versus A with two-path
delay spread and M= N 2. Results are for p=17dB, D= 0.382)
and 3.82\, and delay 7= 0, 0.7T, and T for the desired and
interfering signals. Note that the error rate decreases with r, due to
the diversity beneflit of frequency-selective fading with equalization,
as shown in [1]. This improvement increases with r until 7= 7 and
then remains constant, since the two paths are resolvable for 12> T.
The figure also shows that there is some improvement even il only
the interference has frequency-selective fading, but the best
improvement occurs when both the desired and interfering signals
have frequency-selective fading. A large portion of the maximum
possible improvement is obtained when 7= 0.77T. Figure 7 shows
that for Dw= 0.382) the degradation with correlation increases with
frequency-selective fading. As before, however, with D= 3.82) the
performance is not degraded until A is less than about 20°.

Two-Path
Delay Spread

MeN-2

p=17d8

4 {Degrees)

Figure 7 Average error rate versus A with two-path delay spread

and M= N= 2.
Thus, correlation degrades the performance of an adaptive array
that combats fading, suppresses interference, and equalizes

frequency-selective fading somewhat more than an srray that only
combats fading. Correlation up to 0.5 causes little degradation, but
higher correlation significantly decreases performance. Aithough
our results show that this degradation increases with the number of
antennas, these results are for a linear array, which causes all fading
to be highly correlated when signals arrive from endfire, i.e., as
¢~ 90 °. Since this problem can be reduced when M >2 by not
arranging the antennas linearly, we may be able to avoid this
increase in degradation with the number of antennas. However, in
all cases, increased antenna spacing reduces the A at which
degradation occurs.

5. CONCLUSIONS

In this paper we have investigated the effect that fading correlation
has on the performance of an adaptive array in a digital wireless
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communication system. We described a mathematical model of
local scattering where the received multipath signals arrive within a
given beamwidth and derived a closed-form expression for the
correlation as a function of antenna spacing. Monte Carlo
simulation results show that the degradation in performance with
correlation in an adaptive array that combats fading, suppresses
interference, and equalizes frequency-selective fading is only slightly
larger than that for combating fading alone, i.e., with maximal ratio
combining. This degradation is small even with correlation as high
as 0.5. Our results show that with an antenna spacing of 4
wavelengths, there is little performance degradation as long as the
beamwidth of the received signals is greater than 20°. This
tolerable beamwidth can be reduced even further by larger antenna
spacing since this beamwidth is inversely proportional to the
antenna spacing.
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