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Abstract: This paper presents upper bounds on the
bit error rate (BER) of optimum combining in wireless
systems with multiple cochannel interferers in a
Rayleigh fading environment. We present closed-form
expressions for the upper bound on the bit error rate
with optimum combining, for any number of antennas
and interferers, with coherent detection of BPSK and
QAM signals, and differential detection of DPSK. We
also present bounds on the performance gain of
optimum combining over maximal ratio combining.
These bounds are asymptotically tight with decreasing
BER, and results show that the asymptotic gain is
within 2 dB of the gain as determined by computer
simulation for a variety of cases at a 10> BER. The
closed-form expressions for the bound permit rapid
calculation of the improvement with optimum
combining for any number of interferers and
antennas, as compared with the cpu hours previously
required by Monte Carlo simulation. Thus, these
bounds allow calculation of the performance of
optimum combining under a variety of conditions
where it was not possible previously, including
analysis of the outage probability with shadow fading
and the combined effect of adaptive arrays and
dynamic channel assignment in mobile radio systems.

I. INTRODUCTION

Antenna arrays with optimum combining combat
multipath fading of the desired signal and suppress
interfering signals, thereby increasing both the
performance and capacity of wireless systems. With
optimum combining, the received signals are weighted
and combined to maximize the signal-to-interference-
plus-noise ratio (SINR) at the receiver. Optimum
combining yields superior performance over maximal
ratio combining, whereby the signals are combined to
maximize signal-to-noise ratio, in interference limited
systems. However, while with maximal ratio combining
the bit error rate can be expressed in closed form [1], with
optimum combining a closed-form expression is available
only with one interferer [2-4]. With multiple interferers,
Monte Carlo simulation has been used [4-6], but this
requires on the order of cpu hours even with just a few
interferers. Thus, the improvement of optimum
combining has only been studied for a few simple cases,
and detailed comparisons (e.g., in terms of outage
probability) have not been done.
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In [7], we showed that, with M antenna elements, the
signals can be combined to eliminate L (L <M) interferers
with the performance of maximal ratio combining with
M-L antennas. However, this "zero-forcing" solution
gives far lower output SINR than optimum combining in
most cases of interest and cannot be used when L>M.

In this paper we present a closed-form expression for
the upper bound on the bit error rate (BER) with optimum
combining in wireless systems. We assume flat fading
across the channel and independent Rayleigh fading of the
desired and interfering signals at each antenna. Equations
are presented for the upper bound on the BER for
coherent detection of quadrature amplitude modulated
(QAM) and binary phase shift keyed (BPSK) signals, and
for differential detection of differential phase shift keyed
(DPSK) signals. From these equations, a lower bound on
the improvement of optimum combining over maximal
ratio combining is derived.

1. UPPER BOUND DERIVATION

Figure 1 shows a block diagram of an M element
adaptive array. The complex baseband signal received by
the i antenna element in the k™ symbol interval, x;(k), is
multiplied by a controllable complex weight w; and the
weighted signals are summed to form the array output
signal s, (k).
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Figure 1 Block diagram of an M element adaptive array.

With optimum combining, the weights are chosen to
maximize the output SINR, which also minimizes the
mean square error, which is given by [8]

~1
MSE = [1 + u;R;},u,,] , ¢))




where R,, is the received
correlation matrix given by

interference-plus-noise

L
R, =c’I + z wu! | @)
j=

o? is the noise power, I is the identity matrix, u, and u;
are the desired and j™ interfering signal propagation
vectors, respectively, and the superscript 1 denotes
complex conjugate transpose. Here we have assumed the
same average received power for the desired signal at
each antenna (that is, microdiversity rather than
macrodiversity) and that the noise and interfering signals
are uncorrelated, and without loss of generality, have
normalized the received signal power, averaged over the
fading, to 1. Note that the MSE varies at the fading rate.

For coherent detection of BPSK or QAM, the BER,
averaged over the Rayleigh fading, is bounded by [9],

El:e_"m’—‘“l“‘] , @)

where the expected value is taken over the fading
parameters of the desired and interfering signals, and o2
is the variance of the BPSK or QAM symbol levels (e.g.,
o2=1 and 2 for BPSK and quaternary phase shift keying
(QPSK), respectively). For differential detection of
DPSK, assuming Gaussian noise and interference, the
BER is given by [1],
—u!R>}

P, = %E [e_v’] = —;—E [e ""R"“"‘] .
Thus, the BER expression for both cases differs only Py
constant, and we will now consider the term ETe_"‘;R;"""]‘T

LI I
P, <e" E[e ”SE] =

—-1

o?
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Diagonalizing R,,, by a unitary transformation ¥, we
obtain,
R,, = ¥'diag [x.---xM]\F , )

where diag(-) denotes an MXM matrix with nonzero
elements only on the diagonal, or,

u/R; uy = u)¥ diag [Ml -'-k;}]‘}‘ud .

6)
Let
T

C=[C1"'CM] =‘I‘u,1 . (7)

Then,

_"z' feal? M lea 2
E[*'m“‘] =E|:e =k ]:E Ne ™ |.@®
n=1

Since with independent, Rayleigh fading at each antenna,
the elements of u, are i.i.d. complex Gaussian random
variables, the elements of C are also i.i.d. complex
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Gaussian random variables with the same mean and
variance. Furthermore, the A,’s are independent of the
c,’s. Thus, we can average over the desired and
interfering signal vectors separately, i.e.,

” . ®

leul?
[e x"

Since the c,’s are complex Gaussian random variables
with zero mean and unit variance,

el

el

;\"l

n=1

E } -1 (10)
1
1 +—
n
and
. M
gle®n] - g, |1 | an
n=1 1
1 +—
n
Since the A,’s are nonnegative,
<h (12)

1
1+—
An

and, therefore,
E _“LR;:“d < ud —
e SEy || =E, IR, ||, (13)

where | R, | denotes the determinant of R,,.

Since (13) is the key inequality in our bound (and is
the only inequality we use in determining the bound for
differential detection of DPSK), let us examine its
accuracy. The bound is tight if A,<1, and since the A,’s
are proportional to the interference signal powers, the

bound is tight for large receiv _SIINR, i.e., low BER’s.
Although for all cases F i < 1 and thus BER <

0.5, for A, >1 the BER as given by the bound may
exceed 0.5. Thus, with small received SINR, occasionally
BER’s greater than 0.5 may be averaged into the average
BER, reducing the tightness of the bound. Also, note that
with only noise at the receiver, A, = 62, where o2 is the
variance of the noise normalized to the received desired
signal power, and from (4) and (13),
[o2)"
G 1
P s——= o

where p is the received SINR, while the actual BER is

(14)

W [1]. Thus, even without interference, the bound

differs from the actual BER, and this difference increases
as the received SINR decreases.



Let us consider the case of interference only. In this
case, | R,, | , which is given by (2), may also be
expressed as

IR, |=lQ'Ql= E + D{D; D}D;,D}D;, (15)

where Q = [Dl ‘ DM]v D; = [(“1 it (“L):] (u;);
is the ith element of u;, the sum is extended over all M!
permutations of 1, 2, -, M, the "+" sign is assigned for
even permutations, and the "-" sign for odd permutations.
Now,

L

E [D[D,] = ,zlo} , (16)

,:
where c} is the average power of the jth interferer
normalized to the desired signal power, and

L
E [DZD,D[D,.] = -216; amn

j=

Similarly, from (15), it can be shown that
L M-Zigly I
E[I QrQ I] =mg") .210. 2102”
1, -
2iy
2 Oj - (18)
j=1

where the o}’ are integers (determined below) and the
sum is over all i and /. that einst such that

Mz>iy>i 21, with Elklk_M Since ):0, =1/p, and
o = 1 when Zlklk = 0 (18) can also beexpressed as
L
[IQTQ|:|-p'M|:1 +2‘xx(”) [pc]']
L b
[poz] L]
j= 1

where now M2->i,>i>1.

19)

To determine the aﬁ{"z’s, first note that if

o} =¢?, j=1,..,.L, then _zlc}" =Lo*, and (19)
i
becomes,
M
E[IQfQI]= LY + TRLM T IS™ , 20)

where the B,’s and the of}”’s can be seen to be closely
related. From (7], P, = O for L<M, and thus the B,’s are
the coefficients of the Mth order polynomial in L,
L(L-1)}L-2)(L-M+1). This result is not only useful
when all interferers have equal power, but also serves as a
consistency check on our calculated values of o).

The values of af?’ were generated using a computer
program to examine every permutation in (15) for given
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M. The number of each type of iy, Iy, i,, I;, + term
was calculated to determine oM. Table 1 lists these
values for M=2 to 7. Note that only i; and [, terms exist
for M<4, and i, and I, terms also exist for S<M. Values
for o} for higher M can also be easily calculated.
However, since the amount of computer time to generate
the values of o) increases exponentially with M, our
program couid only generate these values in a reasonable
amount of computer time for up to M=10 (where a
hundred cpu hours on a SPARC10 would be required).

From (3), the upper bound on the BER with coherent
detection of BPSK or QAM is now given by

Pl e

P, <el% oM [1 +§a§f” z [pc}] '
i j=

L )2

T [pc?]’2 ] .

i=1

and from (4), the upper bound on the BER with
differential detection of DPSK is given by

I
P, < %p‘“ |:1 +).‘a(”) [ [pc ] ]

,Ln [po,]i']h > ] :

For the case of noise with L interferers, consider the
noise as an infinite number of weak interferers with total
power equal to the noise. That is, let

2

€2))

(22)

ol = ,j=L+1,..,K , (23)

K-L
-1

and let K—co. Then, p = ,and

N
] =

for j; > 1. Therefore, with noise, the BER bound is the
same as in (21) and (22), but with p including the noise.
In this case, if we define the received desired signal-to-
noise ratio as I'; = 2,‘,2 and the jth interferer signal-to-

L
2 2
jglo,- + 0,

lim

oj
noise ratio as I'; = —-, then (22) becomes (similarly for
0'

21),

i)h

L T
P S—lu— +Zof? | !
2p j=t
T +1
j=1
i2 lz
L T,
|2 @)
IT; +1



TABLE 1

Values of M for M=21t0 7
i
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2 2 1 -1

w
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— e e e e DD = D N e
w
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2210
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+720
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-420
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DN o e e R = W N e

WA bW
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Since —21—M- is the bound with maximal ratio
combining, the term in the brackets is the improvement of
optimum combining over maximal ratio combining based
on the BER bound. Defining the gain of optimum
combining as the reduction in the required p for a given

BER, from (25), this gain in dB is given by,
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irlh

. 10 M) L ]qj
Gam(dB) = -—M—loglo 1 +§a,, '§l T
TlErn+t
Jj=1
i2)l2
L I,
I S - 26)
=1| L
IT; +1
j=1

This gain is therefore independent of the desired signal
power (because the bound is asymptotically tight as
p—ec). However, this is the gain of the BER bound with
optimum combining over the BER bound with maximal
ratio combining. Since the required p for a given BER
with maximal ratio combining is less than the bound, the
true gain may differ from (26) and to obtain a bound on
the gain, the gain in (26) must be reduced accordingly.
For example, with differential detection of DPSK, to
obtain a bou ‘2, the gain given in (26) is reduced by the
factor [%1 . Note that as p—eo, this factor reduces to
one and the gain approaches (26). Thus, we will refer to
(26) as the asymptotic gain.

III. COMPARISON TO THEORY AND SIMULATION

In this section, we compare the bound to theoretical
results for L=1 and simulation results for L>2.

Figure 2 compares theoretical results (from [1-4]) for
the gain to the asymptotic gain (26) versus BER with
coherent detection of BPSK for L=1. Results are
generated for M=2 and 5, and I';=3 and 10 dB. In all
cases the gain monotonically decreases to the asymptotic
gain as the BER decreases. The gain approaches the
asymptotic gain more slowly with decreasing BER for
larger M and also, at low BER’s, the accuracy of the
asymptotic gain decreases with higher I';. Thus, the
accuracy of the asymptotic gain decreases as the p
required for a given BER with optimum combining
decreases, as predicted by the approximation in Section II.

Figure 3 compares Monte Carlo simulation results [4]
for the gain to the asymptotic gain for L=2 and 6. Results
are plotted versus M with I';=3 dB for all interferers and
coherent detection of BPSK at a 10 BER. The
asymptotic gain has the same shape as the simulation
results. The cases include both many more interferers
than antennas and many more antennas than interferers,
but in all cases the asymptotic gain is within 1.8 dB of
simulation results.

Comparison of Monte Carlo simulation results [4] for
the gain to the asymptotic gain for the other cases in {4],
including different I';’s, also showed that the asymptotic
gain has the same shape as the simulation results and is
within 2 dB of the simulation results.
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Figure 2 Gain versus BER for coherent detection of BPSK -
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6

=ese Simulation Results
= Asymptotic Gain

BER=10"
Tij=1,.)=3dB

Gain (dB)

Gain versus M with two and six equal power interferers -
comparison of Monte Carlo simulation results with
coherent detection of BPSK [4] to the asymptotic gain.

Figure 3

IV. CONCLUSIONS

In this paper we have presented upper bounds on the
bit error rate (BER) of optimum combining in wireless
systems with multiple cochannel interferers in a Rayleigh
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fading environment. @We presented closed-form
expressions for the upper bound on the bit error rate with
optimum combining, for any number of antennas and
interferers, with coherent detection of BPSK and QAM
signals, and differential detection of DPSK. We also
presented bounds on the performance gain of optimum
combining over maximal ratio combining and showed
that these bounds are asymptotically tight with decreasing
BER. Results showed that the asymptotic gain is within 2
dB of the gain as determined by computer simulation for a
variety of cases at a 10> BER. These cases include
interference scenarios that cover the range of worst to best
cases for the gain of optimum combining in cellular
systems with M=2. The bound is most accurate with
differential detection of DPSK and high SINR,
corresponding to low BER and a few antennas. The
closed-form expression for the bound permits rapid
calculation of the improvement with optimum combining
for any number of interferers and antennas, as compared
with the cpu hours previously required by Monte Carlo
simulation. These bounds allow calculation of the
performance of optimum combining under a variety of
conditions where it was not possible previously, including
analysis of the outage probability with shadow fading and
the combined effect of adaptive arrays and dynamic
channel assignment in mobile radio systems.
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