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Abstract

For a broad class of interference-dominated wireless
systems including mobile, personal communications, and
wireless PBX/LAN networks, we show that a significant
increase in system capacity can be achieved by the use of
spatial diversity (multiple antennas), and optimum
combining. This is explained by the following
observation: for independent flat-Rayleigh fading
wireless systems with N mutually interfering users, we
demonstrate that with K+N antennas, N1 interferers
can be nulled out and K+1 path diversity improvement
can be achieved by each of the N users. Monte Carlo
evaluations show that these results also hold with
frequency selective fading when optimum equalization is
used at the receiver. Thus an N-fold increase in user
capacity can be achieved, allowing for modular growth
and improved performance by increasing the number of
antennas.

1. INTRODUCTION

The chief aim of this paper is to demonstrate theoretically
that antenna diversity (with optimum combining) can
substantially increase the capacity of most interference-
limited wireless communication systems. Increasing the
number of users in a given bandwidth is the dominant goal of
much of today’s intense research in mobile radio, personal
communication, and wireless PBX/LAN systems [1-6].

Towards this end, it is the purpose of this paper to set on
sound theoretical footing some old ideas and proposals
claiming that the capacity of most wireless systems can be
significantly increased by exploiting the other dimension,
space, that is available to the system designer. To capitalize
on the spatial dimension, multipie antennas, spaced at least a
half of a wavelength apart, are used to adaptively cancel the
interference produced by users who are occupying the same
frequency band and time slots. The interfering users can be
in the same cell as the target user, and thus interference
cancellation allows multiple users in the same bandwidth - in
practice the number of users is limited by the number of
antennas and the accuracy of the digital signal processors
used at the receiver. The interferers can also be users in

other cells (for frequency reuse in every cell), users in other
radio systems, or even other types of radiating devices, such
as microwave ovens, and thus interference cancellation also
allows radio systems to operate in high interference
environments.

Optimum combining and signal processing with multiple
antennas, is not a new idea [2-5]. But spurred on by new
theoretical results, described in the sequel, it may be one
whose time has come. Use of spatial diversity is certainly
made more compelling by the continued decrease in the cost
of digital signal processing hardware, the advances in
adaptive signal processing, and the above system benefits.
Our continuous interest in this subject has recently yielded a
new analytical result that is proven in the body of this paper:
for a system with N users in a flat Rayleigh fading
environment, optimum combining provided by a base station
with K+N antennas can null out N—1 interferers as well as
achieve K+1 diversity improvement against multipath
fading. Computer simulation shows that these results also
hold with frequency selective fading when optimum
equalization is used at the receiver. In addition, the average
error rate, or outage probability, behaves as if each user were
either spatially or frequency isolated from the other users and
derives the full benefit of the shared antennas for diversity
improvement. These results provide a solid basis for
assessing the improvement that can be achieved by antenna
diversity with optimum combining.

2. PERFORMANCE ANALYSIS
2.1 SYSTEM DESCRIPTION

Figure 1 shows a wireless system with N users, each with
one antenna, communicating with a base station with M
antennas. The channel transmission characteristics matrix
C (0) can be expressed as

C@ = [C1@. Co@ o Cui@]

where the N M-column vectors C,(w), C2(w),....Cn(w)
denote the transfer characteristics from the i* user,
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i=12,..N w© the j* j=1,2,.,M receiver or antenna.
Now consider the Hermitian matrix C’(0)C(), where the
dagger sign stands for "conjugate transpose.” If the vectors
in (1) are linearly independent, for each ®, then the NxN
matrix inverse, (C'C)™ exists. This is a mild mathematical
requirement and will most often be satisfied in practice since
it is assumed that users will be spatially separated.
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Multiuser communication system block
diagram.
At the receiver, the M receive signals are linearly combined
to generate the output signals. We are interested in the
performance of this system with the optimum linear
combiner, which combines the received signals to minimize
the mean-square error (MSE) in the output. An explicit
expression was provided for the least obtainable MSE in {7].
The formula for user "1" without loss of generality is given
by

Figure 1
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where o2 =E |a |2, [ 17} stands for the "1 1
component of a matrix, T is the symbol duration, Ny is the
noise density, and a{’ are the 1 user’s complex data
symbols.

2.2 FLAT RAYLEIGH FADING

With flat Rayleigh fading, the channel matrix C(®) is
independent of frequency and all the elements of C can be
regarded as independent, zero-mean, complex Gaussian
random variables with variance 67 for the i user, provided
the antenna elements are separated by at least half a
wavelength. Let us consider the high signal-to-noise case
(which also results in the zero forcing optimum combiner
solution). Under these assumptions (2) reduces to

(MSE)oy, = (CTC)1l No . (3)

It can be shown that the MSE for any signal-to-noise is upper
bounded by (3) and therefore the zero-forcing solution serves
as an upper bound on the MSE solution. For these reasons

and the fact that it is easier to analyze the zero-forcing
structure, we proceed in this paper with this approach. Using
(3), we find that an exponentially tight upper bound on the
conditional probability of error is given by

1
PoC) <expi-& ———1, 4
¢l( ) p{ 63 (CfC)I}} ()
where p is the signal-to-noise ratio for user "1", ie.,
oo?
_Va 1
p= No

In order to analyze the performance of the general set-up, we
must be able to determine the statistical properties of the
random variable o, = 1/(C*C)7i. From the definition of the
inverse of a matrix we express this quantity as follows,

g2 Bt €' _ ACinCh)

= 5
Ay BeaCoC) ®

where det(-) stands for determinant, Ay, is the "11" cofactor,
Ay(C,...Cy) = det (CTC), and Ay(C»,...Cy) is the
determinant resulting from striking out the first row and first
column of C'C. From the definition of the determinant

AN(C1,C3,....CN) = E +Clc;, CiC, - chCi, .6

where the sum is extended over all N! permutations of
1,2,.., N, the "+" sign is assigned for an even permutation
and "-" for an odd permutation, it can be secen that it is
possible to factor out ¢! on the left and C, on the right in
each term. This factorization makes it possible to express Ay
in the following form

AN(C1.C2,....Cx) = C{F(C3,C3,...CN)Cy )

where F is an MxM matrix independent of C,. By
normalizing F by Ay_;(C,..Cy) so that F/Ay_ =M, we
can express the quantity of interest as a positive quadratic
form

a=ClMC, (8)

where M is Hermitian and non-negative. Diagonalizing M
by a unitary transformation ¢, we write for o

a=Cl¢' A9C, =2" Az
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M
o= E n lzl? )
i=1

where A is diag(A; - - Ay, A;’s being the eigenvalues of M,
z= ¢C1,a.ndz,- = (¢C1),‘,i =1 yeeos M.

Since C, is a complex Gaussian vector, so is z conditioned
on ¢. Also, the vectors C and z possess identical statistics
since ¢ is unitary. Therefore, conditioned on the
cigenvalues, the random variable o is a sum-of-squares of
Gaussian random variables and therefore has a known
probability distribution.

One would expect the actual distribution of o 10 be rather
complicated since for example the characteristic function of
a, conditioned on the eigenvalues, is readily evaluated in the
form

M
E{e""""h,i=1,...,M}= I I (1 - 20k . (10)
i=1

But since the eigenvalues are complicated nonlinear
functions of the remaining N—1 vectors, (C2,C3,....Cn). the
actual characteristic function of a, the average of (10) with
respect to the eigenvalues, appears 0 be intractable. A
remarkable discovery, totally unexpected, revealed that the
eigenvalues of M are equal to either 1 or zero, with M-N+1
eigenvalues equal to 1. This astonishing fact makes it
possible to claim that a. is Chi-square distributed.

Applying this result in (4), we evaluate explicitly the average
probability of error, i.e.,

{ p__1 i
P, =E¢ P.(C) SEc exp {- B ——t =Eqe ™
e R BT
M-N+1
—~(M-N+1)
=E, exp{-L> lz12p={1+L| . an
o o;

i=1

Thus, the average probability of error with optimum
combining, M antennas, and N interferers is the same as
maximal ratio combining with M—-N+1 antennas and no
interferers.

The physical implications of this result are as follows. The
error rate of a particular user is unaffected by all other users.
It only depends on the user’s own SNR, p. Of course, the
price paid is in the diminished diversity benefits obtained for
each user. For, when the number of antennas M equals the

number of users N, the average error rate is as if there was
only onc antenna per user. But remarkably, the resulting
performance is as if all the other users or interferers did not
exist. The nulling-out of other users results only in reduced
diversity benefits. But even when M=N+1, all users enjoy
dual diversity, i.c., the addition of each antenna adds
diversity to every user.

2.3 FREQUENCY SELECTIVE FADING

With frequency selective fading, unfortunately, no closed
form analytical results exist as for the flat fading case. The

"problem is complicated since in this case the variances of the

output noise samples are complicated functionals of the
matrix channel characteristics, C(w). From (2) [see also
(@), an exponentially tight bound on the conditional
probability of error is given by

P(C@) < e‘p{'ff?:c_)} (12)

where

T _
cz(C(a)))=-iT;J‘ [C'(m)C(m)]lido). (13)
¥

The outage probability as well as the average probability of
error depends in a complicated way on the statistical
characterization of the matrix C (®).

If we assume that the propagation mode is by uniformly
distributed scatterers and delay spread cannot be neglected,
then a reasonable statistical model for C (@) is the following.
For each frequency , every entry in C(w) is complex
Gaussian, but at different frequencies the entrics are
correlated.  Specifying the multidimensional , correlation
function provides a complete statistical characterization of
the matrix medium. For this model, which is often referred
{0 as the "selective fading" Rayleigh medium, we can derive
an upper bound on the average probability of error. Also, for
a two ray model of the frequency selective Rayleigh process
for each entry of the matrix C, we have carried out Monte
Carlo evaluations. We will discuss these results later, but
first we provide an outline of our bounding technique.

Note that from the properties of the matrix C'(@)C (@),
irrespective of the statistics, we can always express the noise
variance for any frequency o as

) = T —w ()
z | Z,‘((D) I 2
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[a =~

-1
where <> = '2% [cf (w)C(m)] do and
11

T
z;(w) = 9,-’ (0)C, (w) where ¢;(») are the eigenvectors of the
matrix M. We now note that for each frequency

M-N+1
aw) = I [ z:(w) | 2 (15)

is Gamma distributed with probability density

aK—le—a

&-1)! (16)

p(a) =

where K=M-N+1.

Making use of these facts, it can be shown that an upper
bound on the average probability of error is

2 |M-N

P. = EcP.(C(0)) Sdy_y [7] a7)

1-3:5--- [2(M-N)-1] . .

M—NY! . While this may
appear to be a loose upper bound, it does indicate that when
the number of antenna elements is not much greater than the
number of users or interferers we only lose the diversity
benefit from one additional antenna.

where dy_y =

As an illustration, suppose that M—-N=1, i.e., one more
antenna element than users. Our bound indicates that
P,<1/p for a binary system when 62=1. On the other hand,

when only flat fading is present, we can expect 1"_,Si2
P

In actual Monte Carlo evaluation of averages presented
below, we found that the average error rates were much
lower than predicted from (17).

Before proceeding, we note that with a two ray model of
frequency selective fading with N=1 (no interference), [2]
provides bounds showing that the average bit error rate
decreases with increasing time delay between the two
multipath rays when optimum combining and equalization is
used. For this two ray model,

Cij =a; ‘+b,‘ -e_jmi (18)
7 ] ]

where a;; and b;; are complex Gaussian random variables
with zero mean and variance 1/2, and 7; is the time delay
between the two rays.

To gain insight into the behavior of average error rate versus
delay spread, we used Monte Carlo simulation to derive

1000 channel matrices C and numerically calculated the
average bit error rate for each channel from (12). The entries
in C are given in (18). The bit error rate averaged over these
1000 C matrices is shown in Figures 2 and 3.
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Figure 3 Effect of frequency selective fading for

M=N+1.

Figure 2 shows the average bit error rate versus /T, where T
is the symbol duration, for M=N with a) frequency selective
fading of the desired and interfering signals,
T1=Tp= -+ - =Ty=T, where 1, is the time delay between the
two multipath rays of the desired signal and 1, - - - , Ty is the
time delay of the interfering signals, b) frequency selective
fading of the desired signal only, T;=T, T,=" - - =T§=0, and
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¢) frequency selective fading of the interferers only, 7,=0,
T,=- -+ =Ty=T. Results for M = 1, 2, and 3 are in good
agreement with the theory for flat Rayleigh fading (11) and
for frequency selective fading with M = 1 [2]. Figure 3
shows the average bit error rate versus T/T for M=N+1.
Again, the results are in good agreement with (11) for ©=0
and with [2] for T/T=1.

3. EXPERIMENTAL RESULTS

Let us now describe an experiment that verifies some of
these concepts. To demonstrate and test the interference
nuiling ability of optimum combining in a fading
environment, an experimental system was built. Figure 4
shows a block diagram of the experiment, which consisted of
3 users (remotes), a 24 channel Rayleigh fading simulator, 8
receive antennas, and a DSP32C processor at the receiver.
The three remotes’ signals used QPSK modulation, at a
common 50 MHz IF frequency, consisting of a biphase data
signal and a quadrature biphase signal with a pseudorandom
code that was unique to each user. This pseudorandom code
was used to generate a reference signal at the receiver to
distinguish the remotes. The fading simulator generated the
8 output signals for the antennas by combining the three
remotes’ signals with independent flat, Rayleigh fading
between each input and antenna output. The fading rate of
the simulator was adjustable up to 81 Hz. The outputs of the
simulator were demodulated by the 8 antenna subsystems,
A/D converted, multiplexed, and input to a DSP32C. This
DSP32C used the LMS algorithm 1o acquire and track one of
the remote’s signals. With our program in the DSP32C, the
maximum weight update rate was 2 kHz, and the data rate
was set to 2 kbps for convenience (although any data rate
greater than 2 kbps could have been used). The experiment
successfully demonstrated the suppression of 2 interferers for
a 3-fold capacity increase even with a fading rate of 81 Hz.
Note that this corresponds to a data rate to fading rate ratio of
25, which is much lower than that required in most systems.
In all cases the bit error rate did not exceed 1072, Noise on
the circuitry backplane limited the accuracy of the A/D to 6
bits, which did not allow verification of the 6-fold diversity
improvement predicted by (11).

REMOTE
1

RAYLEIGH

4. SUMMARY

For a broad class of interference-dominated wireless systems
including mobile, personal communications, and wireless
PBX/LAN networks, we have shown that a significant
increase in system capacity can be achieved by the use of
spatial  diversity (multiple antennas) and optimum
combining. This increase in user capacity may be achieved
with a modest increase in complexity. Moreover, the system
naturally lends itself to modular growth and improved
performance by increasing the number of antennas.
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