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ABSTRACT

Chromatic dispersion in coherent detection lightwave
systems is a linear distortion in the electrical signal at the
receiver that can be equalized by linear equalization
techniques. Here we consider the performance of a
fractionally-spaced analog tapped delay line equalizer that
has the advantages of being adaptive, capable of also
equalizing other linear distortions (such as polarization
dispersion and nonideal receiver response), and eliminating
chromatic dispersion over any distance if a sufficient
number of taps are used. We show how this equalizer can
be implemented at IF and at baseband (for homodyne
detection). Results show that an N-tap equalizer increases
the maximum bit rate-distance, B®L, approximately
(N—1)/2-fold (e.g., a three-fold increase in distance with a
seven tap equalizer).

I. INTRODUCTION

Signal dispersion is a major factor limiting the
maximum distance and/or bit rate of long-haul fiber optic
systems. Chromatic dispersion is usually the dominant
impairment, but polarization dispersion and nonideal
receiver respomse can also limit the bit rate-distance.
However, in a coherent detection system, all these
distortions are linear in the electrical signal at the receiver
(chromatic dispersion is nonlinear with direct detection)
and, therefore, can be equalized by linear electrical filtering
techniques.

Previous papers have considered linear
equalization techniques for chromatic dispersion [1-4],
polarization  dispersion [4,5], and nonideal receiver
response [4,6]. Chromatic dispersion is the easiest to
equalize because the dominant type (first order) is a fixed
linear delay distortion (polarization dispersion varies with
time and both polarization dispersion and nonideal receiver
response can have higher order delay and amplitude
distortion). Devices that have been studied for chromatic
dispersion  cqualization include microstrip lines [1],
microwave waveguides [2], all pass lattice filters [3], and
synchronous tapped delay lines [4]. Microstrip lines and
microwave waveguides have the advantage that they have
simple structures that can be easily implemented and can
increase the dispersion-limited distance several fold.
However, they must be built to precisely match the
chromatic dispersion-length product of the fiber (i.e., they

are not adaptive), which can be difficult with large
dispersion. Also, they equalize only linear delay distortion
(i.e., they cannot equalize polarization dispersion or
nonideal receiver response!). All pass filters can also
increase the chromatic dispersion limited bit rate-distance
several fold (an N fold increase with a 4N section filter [3}),
but can equalize only delay distortion. A synchronous
tapped delay line, however, can equalize any type of linear
distortion and can easily be made adaptive [4] to track
polarization dispersion and changes in nonideal receiver
response or other distortions due to aging, temperature
variations, etc., and to allow for easy installation without
manual tap weight adjustment. Unfortunately, a
synchronous tapped delay line is limited in the extent that
it can increase the bit rate-distance with chromatic
dispersion - it can increase the dispersion limited bit rate-
distance by a maximum of about 60% (for a 1 dB optical
power penalty). This is because, with a synchronous tapped
delay line, signal delays are an integer multiple of the bit
duration T. Thus, the equalizer frequency response is
periodic with period 1/T, while the signal spectrum usually
extends beyond 1/T, and aliasing (excess bandwidth)
degrades the equalized signal. This problem can be
eliminated by a fractionally-spaced equalizer [7], where the
tap spacings are less than T (T /2 is adequate for most
lightwave systems). Thus, with a sufficient number of taps
a fractionally-spaced equalizer can eliminate chromatic
dispersion for any bit rate-distance, while also reducing
polarization dispersion and nonideal receiver response. It
can also reduce the sensitivity of the detector to timing
offset.

In this paper we study the equalization of
chromatic dispersion in a coherent detection lightwave
system by a fractionally-spaced equalizer. We describe the
equalizer and show how it can be implemented in both
heterodyne and homodyne detection systems. Results show
that a fractionally-spaced equalizer (at baseband for
homodyne and at IF for heterodyne detection) with N taps
1

can increase the dispersion-limited bit rate-distance N—
fold.

In Section II, we describe the equalizer. We
present the analysis and results in Section IIIl. A summary
and conclusions are given in Section IV.

II. SYSTEM
Figure 1 shows a block diagram of an analog

tapped delay line equalizer. The input signal is divided N
ways, delayed by increments of BT, weighted and

1. That is, except for the linear delay portion of the distortion.
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recombined to form the output signal. At Gbps data rates
the delays can be implemented by short lengths of cable or
transmission lines. The weights, which must be adjustable
for our application, can be implemented by variable
attenuators or variable gain amplifiers. These attenuators
or amplifiers need only have the same bandwidth as the
detector preamplifier, at IF for heterodyne detection and at
baseband for homodyne detection. The weights can be
adjusted manually (for chromatic dispersion and constant
nonideal receiver response) or electronically adjusted to
adapt easily to any system or to track time varying
impairments (such as polarization dispersion). Techniques
for implementing adaptation algorithms are described in [4],
where a simple technique is shown using the zero forcing
algorithm  for a  synchronous (f=1) equalizer.
Implementation of the zero forcing algorithm [for a
fractionally-spaced equalizer is discussed in (8].
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Figurc 1 Block diagram of an analog, [ractionally-spaced,
tapped delay line equalizer.

As discussed in Section I, to avoid the excess
bandwidth problem, the spacing of the taps, AT, must be
less than the reciprocal of the maximum bandwidth of the
signal. As stated previously, for most lightwave systems, a
T /2 spacing is adequate.

With heterodyne detection, the electrical signal
is at an IF frequency and the weights are complex valued.
Thus, the weight elements must produce both a variable
gain and phase shift. Alternatively (as shown in Figure 2),
a quadrature hybrid (Hilbert filter [7]) can be used, which
divides the signal into in-phase and quadrature components.
The weights in each of the two branches are then real-
valued (i.e., gain only).
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Figure 2 Block diagram of a fractionally-spaced equalizer
operating at passband (IF).

With homodyne detection, the electrical signal is
baseband, and the weights are real-valued (i.e., gain only -
only Lalf the number of real-valued weights are required as

in the passband equalizer). However, although such a
baseband equalizer can cqualize polarization dispersion,
nonideal receiver response, and second-order chromatic
dispersion, it cannot cqualize first-order chromatic
dispersion, because the inverse filter weights are not real
valued. Specifically, with first-order chromatic dispersion,
the fiber transfer function is given by

where L is the fiber length, D(\) is the linear delay
coefficient (e.g., D(\) = 17 psec/km/nm for a 1.55pm signal
in a standard fiber), and X is the wavelength. Thus, the
inverse filter,

Hpo(f) = H7Y(f) = ol £ Igo(—1), (2)

and the impulse response of the filter is complex.
Therefore, the inverse filter cannot be realized by a
baseband equalizer using only one baseband received signal.
However, with phase diversity homodyne detection [9], the
received optical signal is split and mixed with the local
oscillator and a 90° phase shifted local oscillator, and,
therefore, both in-phase and quadrature components of the
received optical signal are generated at baseband. Figure 3
shows a block diagram of the homodyne detector with
phase diversity. Cross coupled baseband fractionally-
spaced equalizers on the in-phase and quadrature electrical
baseband signals can now equalize the chromatic dispersion
(i.e., QAM equalization [7}). Note that this baseband
equalizer has the same performance as the passhand
equalizer (Figure 2) but uses twice the number of real-
valued weights. However, the variable gain amplifiers or
attenuators need only operate (from DC) up to the
baseband signal bandwidth (the data rate), as opposed to at
least twice the data rate in the passband equalizer.

OPTICAL
SIGNAL

Figure 3 Block diagram of a fractionally-spaced equalizer
operating at baseband.

Note that if we mix the homodync baseband
electrical signals (in-phase and quadrature) with a local
oscillator, we can use a passband equalizer as in heterodyne
detection (i.c., the equalizer of Figure2 without the
quadrature hybrid). This may be advantageous if passband
components operating at higher frequency are preferable to
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lower f{requency components that must operate down to
(nearly) DC. Note, however, that passband operation is
merely an option with the fractionally-spaced equalizer,
whereas passband operation (conversion to IF) is required
with the microwave waveguide or microstrip line equalizers.

Implementation  of a  fractionally-spaced
equalizer at Gbps data rates is relatively easy ([4], see also
[5] and [6] which describe equalizers at 1.1 and 8 Gbps,
respectively). The delays can be implemented by
transmission lines or coaxial cables, and the weights by
variable attenuators. Voltage variable attenuators (for
adaptation), operating from DC to 18 GHz, are
commercially available at low cost. Power
dividers/combiners and amplifiers (if needed), operating
from DC to above 10 GHz are also commercially available,
although amplifiers operating down to DC cost signilicantly
more than passband amplifiers.

III. ANALYSIS AND RESULTS

Let us now consider the effect of chromatic
dispersion on the optical power penalty (eye closure). The
level of dispersion in the channel over the bandwidth (data
rate) B can be expressed in terms of the chromatic
dispersion index «, given by [10]

[X)

A
¢

v =L B LD( (3)

or, from (1)

7=« lg} (1)

The level of intersymbol interference {and therefore the
optical power penalty) for given ~ depends on the
modulation and pulse shape. In [10], the optical power
penalty versus v was shown for CPFSK, MSK, PSK, ASK,
and DPSK with rectangular pulses. The power penalty is
lowest with DPSK, but PSK and ASK have nearly the same
penalty. In particular, for a 1 dB optical power penalty, ~
is approximately 0.23 for DPSK and 0.22 for PSK or ASK.
It was shown in [4], that with ASK this index can be
increased slightly to 0.24, if rounded pulses are used rather
than rectangular pulses. Therefore, in this paper, we will
consider ASK modulation with rounded pulses, although
our results can easily be extended to other modulations
and/or pulse shapes. Specifically, our results were
generated by computer simulation using the model of [4].
That is, the transmitted signal is

X(t) = 33 af P(t—kT) (5)

where a;, = 0 or 1, and T is the bit duration (7 = 1/B),
and

1+85T |
5| 1851 - -
[ o ] S5T<t<—5T
t+.15T |
1 — 5|2l —. —.1
[ b ] 5T<t<—.15T
P(t) = {1 —15T<t<.15T (6)
2
t—.15T
1 — 5 izl l A5T< ¢t <.
[ 35T ] st<st
85T —¢ 5T<t< 85T
35T ==

The transmit data consists of a repetitive pseudorandom
data stream of length 64, which contains all bit sequences of
length 6. Thus, the results are accurate as long as the main
portion of the intersymbol interference due to chromatic
dispersion extends over less than 7 bit periods. The
receiver filter is a 3-pole Butterworth filter with a
bandwidth of 70% of the data rate (.7B).

Figure 4 shows the optical power penalty versus
the chromatic dispersion index with a fractionally-spaced
equalizer with several different number of taps. Results are
also shown for the system without equalization (N = 1) and
with a synchronous linear equalizer with 11 taps? (LE). The
fractionally-spaced equalizer with only 4 taps is shown to
have about the same penalty as a synchronous equalizer.
Note also that, with more than 8 taps, the fractionally-
spaced equalizer eliminates the chromatic dispersion
penalty even for indexes where the eye is closed without

cqualization.
!
5/6 |7 |8 10 [12 14
LE
.
| 1
1 2
Y

Figure 4 Optical power penalty versus chromatic
dispersion index with an N-tap fractionally-
spaced equalizer. Results without equalization
(N=1) and with an 11-tap synchronous linear

)

cqualizer (LE) are also shown.

PENALTY (dB)

2. The performance of this equalizer does not improve with more than 5
taps.
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Figure 4 shows that, for a given optical power
penalty, the chromatic dispersion index increases linearly
with the number of taps. This is shown explicitly in
Figure 5 for a 2 dB penalty. I'rom this figure, it can be seen
that the chromatic dispersion index is approximately given

by

0.32 N=1

0.30 (V=1 N > 2
2

where NV is the number of taps in the equalizer. Thus with
N > 2, the fractionally-spaced equalizer increases the index

fold. Specifically, with every addition of 2 taps

(corresponding to an additional coverage of intersymbol
interference of 7T) the equalizer eliminates intersymbol .
interference (due to chromatic dispersion) over an
additional bit period. Thus, with a sufficient number of
taps® a fractionally-spaced equalizer climinates any amount
of (first-order) chromatic dispersion. For example, at
1.55pm in a standard (single-mode) fiber with a dispersion
minimum at 1.3um (D(\) = 17 psce/km/nm), a 9-tap
fractionally-spaced equalizer increases the maximum B2
from 5500 Gbps®km to 22,000 Gbps®km.

3 T
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Figure 5 Chromatic dispersion index with a 2 dB optical

power penalty versus the number of taps in a
fractionally-spaced equalizer. Calculated results
(points) are compared to the 0.16(N-1)
approximation (solid line).

3. In practice, with large chromatic dispersion, a microstrip line or
microwave waveguide (which would equalize most of the chromatic
dispersion) would be used in combination with the fractionally-
spaced equalizer. This combination would have all the advantages of
the fractionally-spaced equalizer, without requiring a large number
of taps.

If the first-order chromatic dispersion s
equalized (or signals arc transmitted at the chromatic
dispersion minimum of the fiber), then second-order
chromatic dispersion must be considercd and may need to
be equalized. The channel transfer function with second-
order chromatic dispersion is given Dby (following the
method given in [10] for first-order chromatic dispersion)

H,(f) = ¢ (s)
where
4
ay = %»DTX):QL (9)

and DN} is the quadratic delay coefficient (e.g.,
D(\) ~ 0.05 psec/km/nm® at 1.55pm in a dispersion-
shifted fiber). The second-order chromatic dispersion index
1s then given by

4
Yond = 19 Bgl‘ D'(X) Lg (10)
m c

Note that

Hpo(f) = HI'(J) = " — mio(—f). ()

Thus, second-order chromatic dispersion can be equalized
by a baseband equalizer with only N real-valued weights
(i.e., Figure 1 with real-valued ¢; - half the number of
weights used with heterodyne detection). With phase
diversity homodyne detection, however, separate baseband
equalizers are required on the in-phase and quadrature
baseband electrical signals (i.e., Figure 3 without BFSE,
and BFSE; - the same number of weights used with
heterodyne detection). In most cases, though, first-order
chromatic dispersion must also be equalized, and therefore
the equalizer shown in Figure 3 (which requires twice the
number of weights used in heterodyne detection) would still
be required.

Figure 6 shows the optical power penalty versus
the second-order chromatic dispersion  index with a
fractionally-spaced  equalizer with 1 (i.e., without
equalization), 3, 5, and 7 taps. The second-order chromatic
dispersion index (for a given penalty) is increased
approximately 2-fold with 3 taps, 4-fold with 5 taps, and
more than G-fold with 7 taps. Thus, the index appears to
increase at least as fast as linearly with the number of taps
(= {N—1)-fold for 3< N<7), and we might expect that, as
with the first-order chromatic dispersion index, the second-
order chromatic dispersion index could be increased to any
value with a sufficient number of taps. However, at least in
systems in the foreseeable future, the required increase in
the second-order chromatic dispersion index should be
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small. For example, at 1.55pm in a dispersion-shifted fiber,
with D'(\) = 0.05 ps/km/nm?, the second-order chromatic
dispersion limited B3L is approximately ¢ X 10% CGbps®km
(corresponding to 7y, = 0.1) without equalization. Thus,
even for the longest undersea system (10,000 km), second-
order chromatic dispersion will not be a problem (i.e.,
penalty > 1 dB) unless B > 45 Gbps. In such a 10,000 km
system, though, a 3-tap equalizer eliminates the 1dB
penalty at 45 Gbps, and a 7-tap equalizer permits a
doubling of the data rate with the elimination of the 1 dB
penalty.

6 T
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Yang
Figure 6 Optical power penalty versus the second-order

chromatic dispersion index with an N-tap
fractionally-spaced equalizer. Results without
equalization are also shown.

1V. CONCLUSIONS

In this paper we have studied the equalization of
chromatic dispersion by a {ractionally-spaced analog tapped
delay line. We showed that this equalizer can be
implemented at IF for heterodyne detection and at
baseband for homodyne detection. This equalizer has the
advantages that it is adaptive and can.also equalize other
impairments such as polarization dispersion and nonideal
receiver response. Computer simulation results show that,
with a sufficient number of taps, any amount of chromatic
dispersion can be eliminated. For example, with first-order
chromatic dispersion, the maximum BZ2L can be increased

Nq_l -fold (IV >2) with an N-tap equalizer.
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