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Equalization in Coherent Lightwave Systems Using a
Fractionally Spaced Equalizer

JACK H. WINTERS,

Abstract—Chromatic dispersion in coherent-detection lightwave sys-
tems is a linear distortion in the electrical signal at the receiver that
can be equalized by linear equalization techniques. Here we consider
the performance of a fractionally spaced analog tapped delay line
equalizer that has the advantages of being adaptive, capable of also
equalizing other linear distortions (such as polarization dispersion and
nonideal receiver response), and eliminating chromatic dispersion over
any distance if a sufficient number of taps are used. We show how this
equalizer can be implemented at IF and at baseband (for homodyne
detection). Results show that an N-tap equalizer increases the maxi-
munm bit rate distance B’L approximately (N — 1) /2 fold (e.g., a three-
fold increase in distance with a seven-tap equalizer).

I. INTRODUCTION

IGNAL dispersion is a major factor limiting the max-

imum distance and/or bit rate of long-haul fiber-optic
systems. Chromatic dispersion is usually the dominant
impairment, but polarization dispersion and nonideal re-
ceiver response can also limit the bit-rate distance. How-
ever, in a coherent detection system, all these distortions
are linear in the electrical signal at the receiver (chromatic
dispersion is nonlinear with direct detection) and, there-
fore, can be equalized by linear electrical filtering tech-
niques.

Previous papers have considered linear equalization
techniques for chromatic dispersion [1]-[4], polarization
dispersion [4], [5], and nonideal receiver response [4],
[6]. Chromatic dispersion is the easiest to equalize be-
cause the dominant type (first order) is a fixed linear delay
distortion (polarization dispersion varies with time and
both polarization dispersion and nonideal receiver re-
sponse can have higher order delay and amplitude distor-
tion). Devices that have been studied for chromatic dis-
persion equalization include microstrip lines [1],
microwave waveguides [2], all pass lattice filters [3], and
synchronous tapped delay lines [4]. Microstrip lines and
microwave waveguides have the advantage that they have
simple structures that can be easily implemented and can
increase the dispersion-limited distance several fold.
However, they must be built to precisely match the chro-
matic dispersion-length product of the fiber (i.e., they are
not adaptive), which can be difficult with large disper-
sion. Also, they equalize only linear delay distortion (i.e.,
they cannot equalize polarization dispersion or nonideal
receiver response’). All pass filters can also increase the
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IThat is, except for the linear delay portion of the distortion.
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chromatic dispersion-limited bit-rate distance several fold
(an N fold increase with a 4N section filter [3]), but can
equalize only delay distortion. A synchronous tapped de-
lay line, however, can equalize any type of linear distor-
tion and can easily be made adaptive [4] to track polar-
ization dispersion and changes in nonideal receiver re-
sponse or other distortions due to aging, temperature vari-
ations, etc., and to allow for easy installation without
manual tap weight adjustment. Unfortunately, a syn-
chronous tapped delay line is limited in the extent that it
can increase the bit-rate distance with chromatic disper-.
sion—it can increase the dispersion-limited bit-rate dis-
tance by a maximum of about 60% (for a 1-dB optical
power penalty). This is because, with a synchronous
tapped delay line, signal delays are an integer multiple of
the bit duration T. Thus, the equalizer frequency response
is periodic with period 1/T, while the signal spectrum
usually extends beyond 1/7, and aliasing (excess band-
width) degrades the equalized signal. This problem can
be eliminated by a fractionally spaced equalizer [7], where
the tap spacings are less than T (T/2 is adequate for most
lightwave systems ). Thus, with a sufficient number of taps
a fractionally spaced equalizer can eliminate chromatic
dispersion for any bit-rate distance, while also reducing
polarization dispersion and nonideal receiver response. It
can also reduce the sensitivity of the detector to timing
offset.

In this paper we study the equalization of chromatic dis-
persion in a coherent detection lightwave system by
a fractionally spaced equalizer. We describe the equal-
izer and show how it can be implemented in both het-
erodyne and homodyne detection systems. Results show
that a fractionally spaced equalizer (at baseband for
homodyne and at IF for heterodyne detection) with N
taps can increase the dispersion-limited bit-rate distance
(N — 1)/2 fold.

In Section II, we describe the equalizer. We present the
analysis and results in Section III. A summary and con-
clusions are given in Section IV.

II. SYSTEM

Fig. 1 shows a block diagram of an analog tapped delay
line equalizer. The input signal is divided N ways, de-
layed by increments of BT, weighted and recombined to
form the output signal. At gigabit-per-second data rates
the delays can be implemented by short lengths of cable
or transmission lines. The weights, which must be ad-
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Fig. 1. Block diagram of an analog, fractionally spaced, tapped delay line
equalizer.
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Fig. 2. Block diagram of a fractionally spaced equalizer operating at passband (IF).

Justable for our application, can be implemented by vari-
able attenuators or variable gain amplifiers. These atten-
uators or amplifiers need only have the same bandwidth
as the detector preamplifier, at IF for heterodyne detec-
tion and at baseband for homodyne detection. The weights
can be adjusted manually (for chromatic dispersion and
constant nonideal receiver response) or electronically ad-
justed to adapt easily to any system or to track time vary-
ing impairments (such as polarization dispersion). Tech-
niques for implementing adaptation algorithms are
described in [4], where a simple technique is shown using
the zero forcing algorithm for a synchronous (8 = 1)
equalizer. Implementation of the zero forcing algorithm
for a fractionally spaced equalizer is discussed in [8].

As discussed in Section I, to avoid the excess band-
width problem, the spacing of the taps 8T must be less
than the reciprocal of the maximum bandwidth of the sig-
nal. As stated previously, for most lightwave systems, a
T/2 spacing is adequate.

With heterodyne detection, the electrical signal is at an
IF frequency and the weights are complex valued. Thus,
the weight elements must produce both a variable gain
and phase shift. Alternatively (as shown in Fig. 2), a
quadrature hybrid (Hilbert filter [7]) can be used, which
divides the signal into in-phase and quadrature compo-
nents. The weights in each of the two branches are then
real-valued (i.e., gain only).

With homodyne detection, the electrical signal is base-
band, and the weights are real-valued (i.e., gain only—
only half the number of real-valued weights are required
as in the passband equalizer). However, although such a
baseband equalizer can equalize polarization dispersion,

nonideal receiver response, and second-order chromatic
dispersion, it cannot equalize first-order chromatic dis-
persion, because the inverse filter weights are not real-
valued. Specifically, with first-order chromatic disper-
sion, the fiber transfer function is given by
_ A2

H(f) = e, o« =D(N) =L (1)
where L is the fiber length, D ( \) is the linear delay coef-
ficient (e.g., D(A) = 17 ps/km/nm for a 1.55-um sig-
nal in a standard fiber), and A is the wavelength. Thus,
the inverse filter

Heo(f) = HZ'(f) = € = Hig(-f)  (2)

and the impulse response of the filter is complex. There-
fore, the inverse filter cannot be realized by a baseband
equalizer using only one baseband received signal. How-
ever, with phase-diversity homodyne detection [9], the
received optical signal is split and mixed with the local
oscillator and a 90° phase-shifted local oscillator, and,
therefore, both in-phase and quadrature components of the
received optical signal are generated at baseband. Fig. 3
shows a block diagram of the homodyne detector with
phase diversity. Cross coupled baseband fractionally
spaced equalizers on the in-phase and quadrature electri-
cal baseband signals can now equalize the chromatic dis-
persion (i.e., QAM equalization [7]).. Note that this base-
band equalizer has the same performance as the passband
equalizer (Fig. 2) but uses twice the number of real-val-
ued weights. However, the variable gain amplifiers or at-
tenuators need only operate (from dc) up to the baseband
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Fig. 3. Block diagram of a fractionally spaced equalizer operating at baseband.

signal bandwidth (the data rate), as opposed to at least
twice the data rate in the passband equalizer.

Note that if we mix the homodyne baseband electrical
signals (in-phase and quadrature) with a local oscillator,
we can use a passband equalizer as in heterodyne detec-
tion (i.e., the equalizer of Fig. 2 without the quadrature
hybrid). This may be advantageous if passband compo-
nents operating at higher frequency are preferable to lower
frequency components that must operate down to (nearly)
dc. Note, however, that passband operation is merely an
option with the fractionally spaced equalizer, whereas
passband operation (conversion to IF) is required with the
microwave waveguide or microstrip line equalizers.

Implementation of a fractionally spaced equalizer at
gigabit-per-second data rates is relatively easy ([4], see
also [5] and [6] which describe equalizers at 1.1 and 8
Gb /s, respectively). The delays can be implemented by
transmission lines or coaxial cables, and the weights by
variable attenuators. Voltage variable attenuators (for ad-
aptation), operating from dc to 18 GHz, are commercially
available at low cost. Power dividers/combiners and am-
plifiers (if needed), operating from dc to above 10 GHz
are also commercially available, although amplifiers op-
erating down to dc cost significantly more than passband
amplifiers.

III. ANALYSIS AND RESULTS

Let us now consider the effect of chromatic dispersion
on the optical-power penalty (eye closure). The level of
dispersion in the channel over the bandwidth (data rate)
B can be expressed in terms of the chromatic dispersion
index v, given by [10]

2
v == FLD(N) X
™ C

-ell)

The level of intersymbol interference (and therefore the
optical-power penalty) for given v depends on the mod-

(3)

or, from (1)

(4)

ulation and pulse shape. In [10], the optical-power pen-
alty versus vy was shown for CPFSK, MSK, PSK, ASK,
and DPSK with rectangular pulses. The power penalty is
lowest with DPSK, but PSK and ASK have nearly the
same penalty. In particular, for a 1-dB optical-power pen-
alty, « is approximately 0.23 for DPSK and 0.22 for PSK
or ASK. It was shown in [4] that with ASK this index can
be increased slightly to 0.24 if rounded pulses are used
rather than rectangular pulses. Therefore, in this paper,
we will consider ASK modulation with rounded pulses,
although our results can easily be extended to other mod-
ulations and/or pulse shapes. Specifically, our results were
generated by computer simulation using the model of [4].
That is, the transmitted signal is

X(t) = g) aP(t — kT) (5)

where a, = 0 or 1, and T is the bit duration (7 = 1/B),

and
( 2
0.5 t + 0.85T
’ 0.35T

—0.85T =t < —-0.5T

| _ o (tF01sT 2
' 0.35T

~0.5T < t < —0.15T
P(t)=<{ 1 —0.15T <t < 0.15T
t — 0.157\’
- 05 <_0_35T )
0.15T < t < 0.5T

2
0.5 0.85T — 1t
0.35T
0.5T <t = 0.85T.

The transmit data consist of a repetitive pseudorandom
data stream of length 64, which contains all bit sequences
of length 6. Thus, the results are accurate as long as the
main portion of the intersymbol interference due to chro-

(6)
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matic dispersion extends over less than 7-b periods. The
receiver filter is a 3-pole Butterworth filter with a band-
width of 70% of the data rate (0.7B).

Fig. 4 shows the optical-power penalty versus the chro-
matic dispersion index with a fractionally spaced equal-
izer with several different number of taps. Results are also
shown for the system without equalization (N = 1) and
with a synchronous linear equalizer with 11 taps® (LE).
The fractionally spaced equalizer with only 4 taps is
shown to have about the same penalty as a synchronous
equalizer. Note also that, with more than 8 taps, the frac-
tionally spaced equalizer eliminates the chromatic disper-
sion penalty even for indexes where the eye is closed
without equalization.

Fig. 4 shows that, for a given optical-power penalty,
the chromatic dispersion index increases linearly with the
number of taps. This is shown explicitly in Fig. 5 for a
2-dB penalty. From this figure, it can be seen that the
chromatic dispersion index is approximately given by

0.32, N=1,2

vy =
0.32

(N-=1) (7)
2 3
where N is the number of taps in the equalizer. Thus with
N > 2, the fractionally spaced equalizer increases the in-
dex (N — 1)/2 fold. Specifically, with every addition of
2 taps (corresponding to an additional coverage of inter-
symbol interference of T') the equalizer eliminates inter-
symbol interference (due to chromatic dispersion) over an
additional bit period. Thus, with a sufficient number
of taps’ a fractionally spaced equalizer eliminates
any amount of (first-order) chromatic dispersion. For
example, at 1.55 pm in a standard (single-mode) fiber
with a dispersion minimum at 1.3 um (D(\) = 17
ps/km/
nm), a 9-tap fractionally spaced equalizer increases the
maximum B°L from 5500 to 22 000 (Gb /s )*km.

If the first-order chromatic dispersion is equalized (or
signals are transmitted at the chromatic dispersion mini-
mum of the fiber), then the second-order chromatic dis-
persion must be considered and may need to be equalized.
The channel transfer function with second-order chro-
matic dispersion is given by (following the method given
in [10] for first-order chromatic dispersion)

H.(f) = e

N>2

(8)

where

T N
o =§D'()\)?L (9)

and D'( ) is the quadratic delay coefficient (e.g., D' (\)
~ 0.05 ps/km/nm* at 1.55 um in a dispersion-shifced

*The performance of this equalizer does not improve with more than 5
taps.

3In practice, with large chromatic dispersion, a microstrip line or mi-
crowave waveguide (which would equalize most of the chromatic disper-
sion) would be used in combination with the fractionally spaced equalizer.
This combination would have all the advantages of the fractionally spaced
equalizer, without requiring a large number of taps.
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Fig. 4. Optical-power penalty versus chromatic dispersion index with an
N-tap fractionally spaced equalizer. Results without equalization (N =
1) and with an 11-tap synchronous linear equalizer (LE) are also shown.
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Fig. 5. Chromatic dispersion index with a 2-dB optical-power penalty ver-
sus the number of taps in a fractionally spaced equalizer. Calculated
results (points) are compared to the 0.16 (N — 1) approximation (solid
line).

fiber). The second-order chromatic dispersion index is
then given by

| D
Yo = 3,2 BLD'(N) (10)
Note that
Heo(f) = H7'(f) = €%F = Hgp(=f). (11)

Thus, second-order chromatic dispersion can be equalized
by a baseband equalizer with only N real-valued weights
(i.e., Fig. 1 with real-valued c¢,—half the number of
weights used with heterodyne detection). With phase-
diversity homodyne detection, however, separate base-
band equalizers are required on the in-phase and quadra-
ture baseband electrical signals (i.e., Fig. 3 without
BFSE, and BFSE;—the same number of weights used with
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Fig: 6. .Optical-power penalty versus the second-order chromatic disper-
sion index with an N-tap fractionally spaced equalizer. Results without
equalization are also shown.

heterodyne detection). In most cases, though, first-order
chromatic dispersion must also be equalized, and there-
fore the equalizer shown in Fig. 3 (which requires twice
the number of weights used in heterodyne detection)
would still be required.

Fig. 6 shows the optical-power penalty versus the sec-
ond-order chromatic dispersion index with a fractionally
spaced equalizer with 1 (i.e., without equalization), 3, 5,
and 7 taps. The second-order chromatic dispersion index
(for a given penalty) is increased approximately twofold
with 3 taps, fourfold with 5 taps, and more than sixfold
with 7 taps. Thus, the index appears to increase at least
as fast as linearly with the number of taps ( =~ (N — 1)-fold
for3 < N < 7), and we might expect that, as with the
first-order chromatic dispersion index, the second-order
chromatic dispersion index could be increased to any value
with a sufficient number of taps. However, at least in sys-
tems in the foreseeable future, the required an increase in
the second-order chromatic dispersion index should be
small. For example, at 1.55 pm in a dispersion-shifted
fiber, with D' ( A) = 0.05 ps/km /nm’, the second-order
chromatic dispersion limited B’L is approximately 9 X
10® (Gb/s)’km (corresponding to v,,y = 0.1) without
equalization. Thus, even for the longest undersea system
(10 000 km), second-order chromatic dispersion will not
be a problem (i.e., penalty > 1dB) unless B > 43 Gb /s.
In such a 10 000-km system, though, a 3-tap equalizer
eliminates the 1-dB penalty at 45 Gb/s, and a 7-tap
equalizer permits a doubling of the data rate with the
elimination of the 1-dB penalty.
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IV. CONCLUSIONS

In this paper we have studied the equalization of chro-
matic dispersion by a fractionally spaced analog tapped
delay line. We showed that this equalizer can be imple-
mented at IF for heterodyne detection and at baseband for
homodyne detection. This equalizer has the advantages
that it is adaptive and can also equalize other impairments
such as polarization dispersion and nonideal receiver re-
sponse. Computer simulation results show that, with a suf-
ficient number of taps, any amount of chromatic disper-
sion can be eliminated. For example, with first-order
chromatic dispersion, the maximum B2L can be increased
(N — 1)/2 fold (N > 2) with an N-tap equalizer.
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