IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 11, NO. 3. MARCH 1989 291

Three-Dimensional Ultrasonic Vision for Robotic
Applications
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Abstract—We consider a vision system that uses the echo of a trans-
mitted ultrasonic pulse as the basis for identifying objects. With this
system, the return of a single pulse from an object generates a three-
dimensional acoustical characteristic signature across the aperture of
a receiving antenna which can be directly used for object identification.
Thus, there is no need to reproduce an accurate visual representation
in order to recognize which of a class of objects is present. Since the
signal bandwidth is narrow relative to that of an optical imaging sys-
tem, faster execution should be possible. Finally, the need to remove
clutter which may arise in a conventional imaging system, caused by
the compression of three dimensions into two, is totally avoided.

However, unlike an optical system, the extent of an object of interest
may not be orders-of-magnitude larger than the ‘‘beamwidth’’ of the
receiving aperture. We calculate a fundamental limit (in the Shannon
sense) on the number of objects that may be distinguished by an ultra-
sonic system and show that, for modest signal-to-noise ratios and an
object space comparable to the beamwidth, an enormous number of
different objects may still, in principle, be resolved. Based on these
results and on the calculation of signatures of some common geometric
shapes, we conclude that the approach offers promise as a complement
to or replacement for a conventional optical system, and identify some
areas where additional work is needed to realize the full potential of
ultrasonic vision.

Index Terms—antennas, 3-D acoustic signature, robotics, ultrasonic
pulses, ultrasonic vision.

I. INTRODUCTION

HE widespread interest in factory automation and ro-

botics has spurred increasing research into the field
of machine vision and pattern recognition [1}. Most of
this research centers on vision systems using natural or
structured light to illuminate objects of interest and use a
visual, camera-produced two-dimensional image of the
scene as the basis from which recognizable patterns may
subsequently be extracted. These approaches encounter
two distinct difficulties. First, the scene provided by the
front-end camera supplies a vast amount of data, most of
which are irrelevant to the robotic task at hand (e.g., the
title and illustration appearing on the jacket of a book are
irrelevant to the task ‘‘find and move the book’’). Ex-
traction of that limited amount of information actually
needed for task oriented decision making is computation-
ally intensive and time consuming. Second, the camera
produces a two-dimensional representation of a three-di-
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mensional world, thereby producing a sea of background
clutter which may obscure identification of a near-in ob-
ject of interest (e.g., pictures or photographs hanging on
a wall are indistinguishable from an IC package placed on
a bench in front of the wall). Furthermore, the compres-
sion of three dimensions into two may obscure the true
nature of objects (e.g., spheres appear like circular
plates). In short, a vision system that presents data in a
format suitable for human comprehension may be less
suited for comprehension by a task-oriented machine.

Consequently, to complement the aforementioned com-
puter vision approaches and research directions, we con-
sider a vision system that uses the echo of a transmitted
ultrasonic pulse as the basis from which key information
may be extracted. The idea of using a time-pulsed sensor
to facilitate machine vision is not new [2]-[7]. However,
these earlier approaches focus on the generation of sur-
face maps using either a single transducer [2] or a set of
transducers [3]-[5] mechanically swept across the field-
of-view to slowly produce a three-dimensional surface
map of the environment or an array of transducers [6], [7]
to quickly generate surface maps. Again, such a map
might be useful for human comprehension (for example,
medical imaging), but perhaps, be less suitable for a ma-
chine. By contrast, the approach that we take seeks the
direct identification of objects by virtue of their unique
ultrasonic signatures.

In an attempt to simplify and quickly extract key infor-
mation needed for decision making, we consider a system
that receives the echo of a short ultrasonic pulse via a
compact, nonswept, narrow-beam ultrasonic antenna
having a wide field-of-view. With this system, the return
from a single pulse generates a three-dimensional acous-
tical characteristic signature of each object within the
field-of-view. We propose using the signatures of objects
contained in some object set of interest as the basis for
identifying which object was present and for distinguish-
ing among all possible objects in the set.! This approach
completely avoids the need to reconstruct a visual repre-
sentation of the three-dimensional scene but, instead, at-
tempts to directly obtain key features needed to provide
rapid identification and distinguishability by homing in on
the underlying communication aspect of the problem. In

'The approach of identifying objects using the acoustic signature has
been studied previously for illumination of an object by a continuous (CW)
acoustic signal rather than a pulsed signal (see, e.g., [8]).
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this context, the problem may be posed as follows. Given
one of N possible three-dimensional objects, which one is
most likely to have produced this return? As we show, the
ability to distinguish among objects is ultimately limited
by the signal energy-to-noise density ratio (E/N,) and
certain physical parameters of the imaging system.

A fundamental limitation on the ability of such an im-
aging system to distinguish among objects is the relation-
ship between the physical extent of the object, in degrees,
and the beamwidth of the ultrasonic antenna. Each point-
of-reflection on the object’s surface produces a diffraction
pattern in the focal plane of the antenna whose width var-
ies inversely with the size of the receiving aperture (a wide
field-of-view is obtained from a narrow-beam antenna by
placing the receiving sensors along a large arc in the focal
plane). This smearing of points, which is readily ex-
plained via Fourier optics as arising from the suppression
of high spatial frequencies, causes a loss of distinguish-
ability as the object size becomes comparable to or smaller
than the beamwidth. Fortunately, this loss of distinguish-
ability can be partially offset by using a sufficiently broad-
band pulse to allow points closely spaced in azimuth and
elevation to be distinguished by differences in radial dis-
tance from the antenna. In this regard, we parenthetically
note that ultrasonic pulses are far superior to microwave
or optical pulses because the ultrasonic speed of propa-
gation is five orders of magnitude smaller.

We confine our attention to the distinguishability of
three-dimensional signatures (azimuth, elevation, and ra-
dial) and explore the relationships between distinguish-
ability, physical parameters, bandwidth, and E/N,. We
postpone for later work the issue of signature variability
with object orientation; although related, this issue is more
appropriately treated as one of object classification rather
than one of object distinguishability.

In Section II, we present a model of the ultrasonic im-
aging system and define the basic nomenclature. Section
III is devoted to understanding the fundamental limita-
tions of the system, and we present an upper bound, in
the Shannon sense, on the number of signatures that can
possibly be distinguished. Typical results are as follows.
Consider all objects located within a volume half as large
as the antenna’s main lobe in azimuth and elevation and
half the spatial extent of the transmitted pulse in depth.
At an E/N, of 20 dB, no more than 94 000 objects may
be distinguished; under the same conditions, but with the
extent of objects confined to the entire main lobe in azi-
muth and elevation, the fundamental bound on the num-
ber of objects that may be distinguished grows to more
than 5 X 10'!, Thus, the system may distinguish among
many objects, each smaller than the beamwidth. We also
derive an upper bound on the number of objects that may
be distinguished subject to some acceptable misidentifi-
cation criterion. In Section IV, we consider the distin-
guishability of objects possessing some common geomet-
rical shapes (spheres, cubes, etc.). We first derive a
formula for the images of arbitrary objects in the time
domain and, using this formula, examine the image of

common shapes. Results show that the signal received
from objects is mainly from surfaces that are at small an-
gles relative to the wavefront. For example, when the dis-
tance to the object is ten times the antenna diameter, the
signal power received from surfaces at a 5° angle are 20
dB lower than from surfaces at a 0° angle. We also con-
sider the metric distance between the image of two spheres
of various sizes and show that the difference in the shape
of the image is an order of magnitude less than the differ-
ence in the magnitude of the image. Thus, we must be
able to distinguish most objects based on the return from
a small portion of the object.

II. SYSTEM MODEL

The vision system that we wish to consider is shown in
Fig. 1 which, for simplicity, is drawn in two dimensions
only (azimuth or elevation and range).> An object is il-
luminated from the right by the spherical wave produced
by an ultrasonic point source. The characteristic dimen-
sions of the object are large compared to the ultrasonic
wavelength, and the acoustic impedance of the object is
much larger than that of air, so that the object appears
like a perfect mirror to the ultrasonic illumination. Along
a spherical contour located close to the object with the
center at the middle of a thin lens, the reflection of the
object may be found by ray tracing, that is, along the ob-
ject sphere, the amplitude and phase of the reflection may
be found by tracing each incident ray as it is reflected
from the object. For each incident ray, the object’s sur-
face normal is found at the point where the ray is inter-
cepted by the object, and the direction of the reflected ray
is found by setting the angle of reflection equal to the an-
gle of incidence. The reflected scalar field along the ob-
ject sphere presents an input to the vision system which
is then transformed, in accordance with the principles of
Fourier optics, into an image formed along a second
spherical contour (the image sphere). In practice, the thin
lens would be replaced by an array of small receptors; for
now, we assume the existence of many small receivers
located along the image sphere which present a continuum
of the image to the vision processor.

In the remainder of this section, we briefly review the
principles of Fourier optics as they apply to this system
in order to establish and clarify the mathematical nomen-
clature and to pinpoint the approximations made. We also
extend these results, which are derived for monochro-
matic illumination, to treat the case of pulsed illumina-
tion.

Assume, to start, that the point source emits a mono-
chromatic wave at frequency w, and that the reflection of
the object cast along the object sphere is H(a, w) where
the overbar denotes a complex valued function. From
Green’s theorem, the field reflected back to the plane of

To simplify the analysis in Sections II and IV, we consider only two
dimensions since the extension of the formulas to three dimensions is triv-
ial.
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Fig. 1. Ultrasonic vision system.
the lens, F(x, w), can be represented as

F(x, w) = C(R)) S H(a, w)
* exp (J'k‘ﬁe% 4+ x* — 2R, x sin a) da

(1)

where C(R;) is a constant depending only on R, and k =
w/c is the wavenumber, with ¢ the speed of propagation.
Suppose R; >> x. Then,

\/R% + x2 — 2R, x sin «

x> 2x
Rl\/1+—5——sma
RY R,

x? x
— — sin «

2R? R,

(2)

R{l +

and
F(x, w) = C(R,) e™® S H(a, o)

2
- exp [—jk <x sin o — 2X_R1>] do. (3)

For our purposes, the constant C(R,) ¢’*® is irrelevant
and will henceforth be assumed to be of value unity. As-
suming « to be a small angle, we obtain the desired result

F(x, w) = e/&/2R S H(w, ») e da, (4)

i.e., except for the phase factor e/*'/?R the field re-
flected at the lens plane is the Fourier transform of the
excitation.

Projection through the lens produces an addition quad-
ratic phase shift and also limits the field to that which
exists along the aperture of the lens A

Flx, w) e 7, A .1
G(x, ) = 2 205
0, otherwise

where f is a characteristic of the lens called the focal
length. Again applying Green’s theorem to this field ap-
pearing just to the right of the lens, we find that over the
image sphere

42
S(0, w) = S—A/2 G(x, w) exp [ jk (x*/2R, — x6)] dx

(6)

where the same approximations were made as before (R,
>> x, § small). Substituting (4) and (5) into (6), we ob-
tain

42
S(8, w) = Sﬂq/z exp [ jk (x*/2R, + x*/2R, — x*/2f)]

- el S H(a, o) e da dx. (7)

Interchanging the order of integration and applying the
lens equation

1 1 1
=t =3 (8)
R, R, f

we obtain the principal result

- _ sin k(6 + a)A/2

S0, w) = A SH(a, ®) [k« )4/2] (9)

[k(6 + «)a/2]

Inspection of (9) reveals that the signal available for
detection on the image sphere S (6, w) is of the form of a
convolution of the excitation H(6, ) with the pupil func-
tion sin k6 /kf. Alternatively, we may view S(6, w) as
the response of a spatially band-limited filter to the exci-
tation H(#, w). This filtering, which is the result of the
finite lens aperture, distorts and prevents the image from
being an exact replica of the excitation; the loss of high
spatial frequencies arising from the filter creates a limit
on the distinguishability of objects to be recognized by
the vision system.

To conclude this section, we derive the response of the
system to a pulsed excitation p (¢) modulated onto a car-
rier w,. We start with a representation for S(8, w) from
which irrelevant factors pertaining to magnification are
suppressed, but which preserves all of the salient system
features. In this manner, from (9), we define

sin (6 + «)
B(6 + @)

where 8 (= kA/2) varies linearly with w. Referring to
Fig. 1 and recalling the principle of ray tracing, we note
that the excitation H( o, w) has amplitude which is inde-
pendent of the frequency w and has phase which varies
linearly with w (delay only). Let the delay at angle « be
represented by 7(a). Then,

H(a, w) = H(a)e ™), (11)

Assume now that, rather than being monochromatic, the
point source illumination is of the form p (¢) e/, having
Fourier transform P(w — w,) where P(w) ¢ p(t). Since
the vision system is linear, superposition applies, and we
may view the temporal response S(#, t) as the linear su-
perposition of sinusoids weighted in accordance with P (w
— w,). The result from (10) and (11) is

S(8, w) = S H(a, w) da  (10)

swnzggympwmww—wg

_sinB(6 + @)

Juwt
500 + ) e’ do dw /2.

(12)
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We assume that the bandwidth of p (¢) is small compared
to the carrier frequency w, (narrow-band assumption) to
justify neglecting dispersion caused by the lens pupil
function [sin 8(6 + «)/B(6 + a)]. Let B, = B(w,).
Then, reversing the order of integration in (12), we obtain

50,0 = e | H(a)e @ p[1 — 1(a)

sin B,(6 + @)
B.(0 + @)

As the final exercise, let us consider the baseband repre-
sentation of the response S(0, t). Let

H(a) = H(a) e 7o),

We thus obtain our final result

3(0, t) = S ﬁ(a)p[[ - ‘r(a)]

da. (13)

(14)

sin 8,(8 + «)

B0 +a)

(15)
Thus, the baseband response appearing along the image
sphere of Fig. 1 may be expressed as a sum of delayed
versions of the illuminating baseband pulse p (¢) weighted
by the reflected excitation H(«) and filtered by the finite
aperture of the lens. The delayed versions of the pulse
arise from the depth of the illuminated object. Thus S(8,
t) can alternatively be represented in terms of some spa-
tially and temporally varying excitation I(«, ¢) as

58, 1) = S {S I(a, 7) p(t — 7) dT]
sin B,(0 + o)
Bo(0 + o)

From ray tracing, the response caused by illuminating any
object with a point source emitting a pulse of energy at
the carrier frequency, w, may be obtained from (15) or
(16).

do. (16)

III. FUNDAMENTAL LiMITS

We now consider the fundamental limits of the system
described in Section II by analyzing an upper bound, in
the Shannon sense, on the number of object signatures
that can be distinguished.

Consider a volume in space that defines the extent of
objects we wish to distinguish among. Let the location of
a point in space relative to the lens be given by its radius
r and its directional coordinates « and ¢. The volume of
interest is bounded by angles «; and «,, ¢, and ¢,, and
radii r; and rp, with Aa = | o) —ay |, Ad = | &y — ¢, |,
and Ar = | r; — ry|. The volume is illuminated by a unit
energy pulse p(t) with rectangular signal spectrum of
bandwidth 47W centered at w,. The reflection of this pulse
is received through a lens (or by an antenna) of rectan-
gular aperture A,, A;. The parameters of interest are 1)
B,, the ratio of A« to the main lobe azimuth width of the
antenna, 2) By, the ratio of A¢ to the main lobe elevation
width, and 3) B,, the ratio of the depth of the object (in

terms of propagation time) to the inverse signal band-
width:

B = A )
“ " 2arcsin (N\/4,)’

<2WAr>
B, =|——
C

where N\ is the wavelength of the pulse at w, (N =
2we [ w,).

Now consider an object within the volume which is il-
lustrated by an ultrasonic plane wave. Suppose that this
object consists only of surfaces located at r;, r; + Ar/M,
ry+2Ar/M, -+ -, ry — Ar/M where M is an arbitrary
integer greater than zero. The excitation I(«, ¢, t) can
then be expressed as

Ao

By = —m——;
® 2 arcsin (N/4,)

M-1
I(a, ¢, 1) = Z}O a(m, o, ¢) p(t — mr) (17)
where® 7 = 2Ar/Mc. We place a constraint on the exci-
tation as follows:
M-t

Zo S a*(m, o, ¢)da dp < E.

m=

(18)

Since the space is limited in extent, a(m, «, ¢) can be
expressed as a product of prolate spheroidal wave func-
tions ¥ (a) and ¥, (@) [9] and the M index-limited dis-
crete prolate spheroidal sequences v; (m) [10], i.e.,

a(m, a, ¢) = j%l oty (m) Yo (o) ¥, (). (19)

Since the prolate spheroid sequences and wave functions
are orthonormal,
M-1
2 Saz(m, a, ¢) da dp = % aj < E. (20)
m= FLD
From (16), we conclude that, along the image sphere
M-1
S(0,6',t) = B,B, 20 a(m, o, ¢) p(t — m7)

M
= BaB¢ mZJ} }§[ ajklvj(m) 'l//k(a)

vi(¢) p(t — mr) (21)

where B, and B, are the band-limiting operators that are
due to the spatial filtering of the lens in the « and ¢ di-
rections, respectively. Since p(r) is band-limited, let
¢; (m) be the band-limited version of the index-limited
sequence v; (m). Then, the following orthogonality con-
ditions hold [9]-[11]:

(¢ ey = Z—V;Tajk, hk=0,M-1 (22)
(Ba; (), Bote (a)) = N5y, (23)

*Note that the factor of 2 is used because we consider both the propa-
gation time to and from the object.
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and
(Bo¥;(0), By (0)) = N5y, (24)

where A, )xj(-“), )\](-4’) are the eigenvalues associated with
the discrete prolate spheroidal sequence and prolate sphe-
roidal wave functions for o and ¢, respectively. These
eigenvalues are readily determined from M, B,, B, and

B, [9]-[11].
Let
(@) (#)
2 _ )\f)\k A 2
Ciu = T owr £37°8 (25)
Then, from (20),
c3y v 2Wr
> al M < E. (26)

jokd FEENNEON®

A. Capacity

From (26) we now determine an upper bound on the
capacity of the system (number of objects that can be dis-
tinguished without error) as a function of B,, B,, B,.
Along the image sphere, the distributed receiver is pre-
sented with

U, 0,:)=8(0,0",t) +7n,(0,0,t) (27)
where 7,(6, 0', t) is additive white Gaussian noise of
spectral height N, /2. Since §(6, ', r) has been expressed
as the sum of three-dimensional orthogonal modes, the
capacity of this three-dimensional system, for an arbitrary
partition of the energy E among the modes, is simply

NCONE

P
C= j%l log, <1 + E/N, IQ,—WT‘ ﬁju) (28)

where 3, is the fraction of the signal energy apportioned
to the jkI mode, subject to the constraint 2J By = 1. The
K

optimum energy partition that maximizes the capacity can
be found by using the water fill analogy [12], i.e.,

>\j>\§¢a))\§¢) -1
J- (BN e

2Wr
6“ = )\\)\(W)\(‘ﬁ) -1
’ if <L¥ E/N(,) <

(29)
2Wr

0 otherwise

1 MACIN -l
J:E<1 +,§",< IZWT E/N°> ) (30)

and the sum is over the m terms where

)\j)\l((ﬂ))\;d’) -1
TE/NO < J.

In Fig. 2 we plot the capacity in bits (note that for a
capacity of K bits, 2% objects can be distinguished) versus
the received signal energy-to-noise density ratio E /N, for
B, = B, = 0.5 (object space equal to one-half main lobe)

where

50

Br=4 4

| gz

=

0 10 20 30
E/Ng (08)

CAPACITY (BITS)

o

Fig. 2. The capacity versus the received signal energy-to-noise density ra-
tio for B, = B, = 0.5 and several values of B,.

and several values of B,. For example, for B, = By =
0.5, B, = 1, and E/N, = 10 dB, the capacity is 7.5 bits,
i.e., up to 180 objects can be distinguished. Thus, our
system may be able to distinguish a large number of ob-
jects even if their sizes are smaller than the antenna’s
beamwidth. Also note that even for B, = 0, a large num-
ber of objects can be distinguished since the system can
distinguish different surfaces in the «, ¢ plane.

Fig. 3 shows the capacity in bits versus E/N, for B, =
0.5 and several values of B, = B,. Note again that a large
number of objects can be distinguished even if the objects
are smaller than the beamwidth, but as the size of the ob-
jects decreases the number that can be distinguished goes
to 1.

Consider next the capacity for large B,, B,, and B,.
Under these conditions, each of the eigenvalues is either
very close to unity or very close to zero in value [13].
Then, the capacity can be approximated by

1
C = m10g2< 1 + E/N, <;>> (31)
where
m=[2B, + 1] - [2B, + 1] - [2B, + 1]. (32)
For large m,
1
C = E/N, - (33)

In (2)°

Fig. 4 shows the capacity versus E/Nj for several val-
ues of B, = B, = B, using (31) and (33). For B, = B,
= B, >> 1 the capacity rapidly approaches the asymp-
totic value.

B. Distinguishability under a Fidelity Criterion

The number of objects that can be distinguished with a
given error probability can be calculated as follows.
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Fig. 3. The capacity versus the received signal energy-to-noise density ra-
tio for B, = 0.5 and several values of B, = B,,.

CAPACITY (BITS)

//

o

Fig. 4. The capacity versus the received signal energy-to-noise density ra-
tio for several values of B, = B, = B, using the formula for large B,,
B,, and B,.

Equation (26) is the equation of an infinite dimen-
sional hyperellipsoid with semi-axes of length

\/)\j)\i"))\f‘”E/ZWT or, normalizing all distances by JE,

\/)\j)\ia))\fd’)/ZW-r. For an object to be distinguished with
a given error probability, the point in the pattern space
corresponding to the object must be separated by a dis-
tance d (which depends on the error probability) from all
points corresponding to other objects. Thus, an upper
bound on the number of objects that can be distinguished
subject to a fidelity criterion is the maximum number of
nonoverlapping hyperspheres of radius d /2 with centers
in the hyperellipsoid. This number is upper bounded by
the number of hyperspheres of radius d/2 that can be

NO. 3, MARCH 1989

placed in an infinite dimensional box with sides of length
2 - NNNIN® /2Wr + d, which is upper bounded by
the ratio of the content of the box to the content of one
hypersphere. Thus, if we consider only the n most signif-
icant eigenvalues, the number of objects that can be dis-
tinguished is upper bounded by [14]

)\ 'x(ﬂ)x(‘i’)
D%k B +d

11
2Wr

jikid

2(;) W"/z/[nF(n/Z)]
)\_)\(01))\(4’)
ﬁ ]_k__l_ + 2
ki | d 2Wr

= 27rn/2 (34)

nl'(n/2)

where the product is over the n terms.

For given minimum distance d between objects in the
pattern space, we now consider the probability of error in
detecting an object for a given signal energy-to-noise den-
sity ratio E/N,. We assume that the components of the
noise in each dimension are statistically independent,
zero-mean, Gaussian random variables. Consistent with
an upper bound on N, we determine a lower bound on the
probability of error, which for a minimum distance d be-
tween objects is given by

Pez—erfc< \//—>

=

(35)

Thus, from (34) and (35), we can determine an upper
bound on the number of objects that can be distinguished
for a given error probability at a given E/Ny. Unfortu-
nately, the tightness of the upper bound decreases dra-
matically as more eigenvalues are considered, i.e., N in-
creases substantially with n even if the added eigenvalues
are negligible. Therefore, for the following results we
only consider terms where

. )\I((zx))\(di)

> 1072 4%
2Wr

(36)

Fig. 5 shows the upper bound on the number of objects
that can be distinguished versus 4 /d* (for E/N, = 0 dB)
for B, = 0.5 and several values of B, = B,,. For fixed P,,
the required E/N, is just a constant dB valued added to
4/d*. The E /N, required for P, = 107", 1073, and 10’
(where the constant values are —0.8, 6.8, and 9.6 dB,
respectively) are also shown. For example, for B, = B,
= 0.3 and B, = 0.5 up to 1000 objects can be distin-
guished with a 1073 error probability if E/N, is 17 dB.
Thus, our results show again that the system may be able
to distinguish a large number of objects with good fidelity
even if their size is smaller than the antenna’s beamwidth.
However, since it can be easily shown that N = 1 for d
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Fig. 5. Upper bound on the number of objects that can be distinguished
versus 4 /d*(E/N, = 0 dB) and E/Ny(P, = 107", 1073, 107%) for B,
= 0.5 and several values of B, = B,.

= 2(4/d* < 0dB), Fig. 5 also shows that the bound is
very loose, especially for large B, = B,.

Consider next the number of objects that can be distin-
guished with a given error probability for large B,, B,
and B,. With B,, B, B, >> 1, NN\ /2Wr is ap-
proximately 1 forn = (2B, + 1) (2B, + 1) (2B, + 1)
terms and zero for all other terms. Thus, (26) is the equa-
tion of an n dimensional hypersphere of radius 1 (nor-
malizing by \/E), and the number of objects that can be
distinguished with a given error probability is the maxi-
mum number of nonoverlapping hyperspheres of radius r
(= d/2) with centers in the hypersphere of radius 1.
Using results appearing in [15], we plot in Fig. 6 the up-
per bound on the number of objects that can be distin-
guished versus 4/d* (E/N, = 0 dB) and E/N, (P, =
107", 107%, 107°) for several values of B, = B, = B,.
For B, = B, = B, = 2, N is very close to the value for
very large B,, B, B,.

Finally, we note the following limitations to our results
on the number of objects that can be distinguished. First,
our results are only an upper bound, which may not be
very tight, especially for small values of B,, B,,, B,. This
is seen by noting that the number of objects calculated
from the small B,, B,, B, formulas can exceed the bound

for large B, B, B, even when these parameters are less

than 1. Second, our results assume that an object can re-
flect some of the received energy from internal points.
However, most objects act as perfect reflectors to ultra-
sonic radiation and, therefore, the number of distinguish-
able objects in the real world may be much less. Third,
real objects may not be appropriately spaced in the pattern
space, and, therefore, we may be able to distinguish far
fewer objects of interest. Furthermore, implementation of
techniques to achieve this distinguishability may be dif-
ficult because the dimersionality can be large, and fea-
tures may not be well behaved with respect to object ro-
tation and translation. However, although our results may
be much higher than that which can practically be
achieved, they do give an upper bound against which
practical systems may be compared.

IV. DISTINGUISHABILITY OF COMMON OBJECTS

We now consider the distinguishability of objects with
common shapes, in particular, flat plates, edges, and
spheres.*

In ultrasonics, the attenuation of the signal is a function

*As in Section II, to simplify our results the analysis is done in only two
dimensions (azimuth or elevation and range), since the formulas and results

can easily be extended to three dimensions.
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Fig. 6. Upper bound on the number of objects that can be distinguished
versus 4/d*(E/N, = 0 dB) and E/Ny(P, = 107", 1073, 107°) for

several values of B, = B, = B,,.

of both distance and frequency. In this paper, we consider
only a narrow-band pulse so that the dispersion of the sig-
nal can be neglected. However, the attenuation of the sig-
nal with distance at a given frequency can vary signifi-
cantly with many factors, including temperature and
humidity. Thus, the distinguishability of objects greatly
depends on whether or not the attenuation versus distance
is known. We therefore calculate distinguishability for two
cases: 1) where the attenuation versus distance is un-
known (and, is therefore not used in calculating distin-
guishability), and 2) where the attenuation versus distance
is known.

Below, we derive from Section II a general formula for
the image of arbitrary objects in the time domain, calcu-
late the image for flat plates, edges, and spheres, and ana-
lyze the distinguishability for the two cases described
above.

A. Time Domain Image

We begin our derivation from (16), and reintroduce the
magnitude information dropped after (9), i.e.,

S(6,t) =4 S H o, 7)p(t = 7) dr}

_sin kA/2(6 + @)

kA/2(0 + @) da. (37)

Let us assume that I(«, 7) can be expressed as B(a, r)
where r is evaluated at c(7 — )/2 and f, is the time
when the pulse leaves the plane of the antenna to illumi-
nate the object. That is, B(a, r) is the object surface that
is not hidden from the view of the antenna in polar (spher-
ical for a three-dimensional object) coordinates, under the
assumption that there are no internal reflections on the
object. Thus, (37) can be rewritten as

S(6,1)=A S H B(a, 7) |r=c(7_t0)/2p(1 - 7) dT]

_sin k4/2(6 + «)

kA/2(8 + @)
Under the assumption that all surfaces are perfect reflec-
tors, on the object surface (that is not hidden from the

view of the antenna) for every « there is only one r, i.e.,
r=g(a),or

da. (38)

ael

B(a, r) = (39)

{50 - g(a))
0 elsewhere

where  is the region where the surface of the object ex-
ists. Noting that

T=2—g@+t0 (40)
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and substituting (39) into (38) we obtain

_ sin kA/2(0 + «)
S(6.1) = 4 gn kA/2(0 + «a)

28()
p<t - -T_ - t0> do. (41)

Let g’ (a) represent distance from a plane directly in front
of the object, i.e.,

g'(a) = g(a) - R, (42)
and let
= 221 (43)
c
Then, from (41) to (43),
- _ sin k4/2(6 + «) _ 2g'(a)>

S@,1) =4 Sn kA/2(0 + ) p<’ o )
(44)

Now consider a pulse with rectangular signal spectrum
of bandwidth 47 W as discussed in Section III. Thus, p (¢)
is given by

sin 2w Wt .
= oW et 45
p(1) = S V2 e (45)
and
2 ’
sin 27rW<t - M>
= in kA/2(6 + ¢
S(O,t)zAS sin kA /2 ( o)
Q

kA/2(6 + o) 21rW<t - 2iz(i)>

- N2W exp [jw0<t - 287(0‘)” do.  (46)

Finally, to make the results as general as possible, let us
normalize all angles, distances, and times by the width of
the main lobe and normalize the bandwidth of the pulse
by the center frequencys, i.e.,

z = m, (47)
y=a (48)
72 = F5% (49)
r = m’%m, (50)
and
AW = 4IW, (51)

with integration over the region Z rather than Q. There-
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fore, ( )
_ sin w(z + y
S(y,t)=)\\/iP—VSZ—7r(Z—W

sin [ 2mAWR, /A (1 - f(2))]
20AWR, JA(t' — f(2))

cexp [jdnR /A(1 = f(2))] dz. (52)

Next consider f(z) for a flat plate, edge, and sphere.
For each object f(z) can be easily determined. For a flat
plate of length D relative to the width of the main lobe
and at angle vy to the wavefront (see Fig. 7)

fz) = {(Z — Zp) tan y

0 elsewhere

0<z—20<D
‘ (53)

For an edge, with each face of length D relative to the
width of the main lobe at angles ++ to the wavefront (see
Fig. 8)

_ (|Z—Zol)tan'y
f(z)—{o

For a sphere of radius R relative to the width of the main
lobe (see Fig. 9)

1) = {R(l -V1-(z- zO/R)Z)

0 elsewhere.

z2—29| =D
|2 = 20| (54)
elsewhere

|z -z =R

(55)

To simplify the results, we now assume that z is at the
center of the main lobe, i.e., zo = 0. Thus, the image for

flat plates and edges depends only on AV2W, R, /A, AW,
D, and v and for spheres depends only on AV2W, R, /A,

AW, and R. Note that A\2W only affects the magnitude
of the image.

Fig. 10 shows the magnitude of the image at t' = 0 of
a flat plate of various lengths with v = 0°, illumination
by a pulse. Since the plate is perpendicular to the wave-
front, AW and R, /A do not affect the image at t' = 0.
For t' # 0, the image has the same shape as at t' = 0,
but the magnitude varies as sin (2wAWR,/At")/
(2mTAWR, /At' ). For D < 1, the image is very close to a
sin x /x pattern, whose magnitude decreases with D. For
D > 1, the image approaches a rectangular shape as D
increases. Thus, as is well known, the object size must be
greater than the beamwidth before the image changes sig-
nificantly with object size. However, as shown later, even
for D < 1 the image changes slightly with D, so that at
high enough E /N, these objects can be distinguished.

Fig. 11 shows the magnitude of the image at ' = 0 of
a flat plate of the same width as the main lobe at various
angles +y relative to the wavefront. Results are shown for
R;/A = 10 and AW = 0.1. Note that the peak image level
is down 10 dB at y = 5°. For small v, tan ¥ = v, and,
therefore, from (52) results depend primarily on the prod-
uct ¥R, /A. Thus, the peak image level is also down 10
dB for R;/A = 20 at y = 2.5°, for R /A = 5 aty =
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10°, etc. Thus, unless R, /A is very small, the magnitude
of the return from most surfaces of objects will be very
low.

Fig. 12 shows the magnitude of the image versus time
of a flat plate of the same width as the main lobe at y =
5°. Note that the image is basically a | sin x/x | in space
and time, i.e., except for an overall magnitude reduction
the image is about the same as for a plate at v = 0°. Thus,
the depth resolving capability of the ultrasonic system
does not significantly increase the distinguishability of flat
plates at various angles. Note that we can increase the
depth of the plate by increasing v or R, /A (for the same
D), but, as noted above, this reduces the magnitude of
the image.

Fig. 13 shows the magnitude of the image at t' = 0 of
an edge with each face at angle vy to the wavefront and of
the same width as the main lobe. Results are shown for
R,/A = 10 and AW = 0.1. The image peaks at y = 0
and is the sum of the images of the two flat plates that
make up the edge.
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Fig. 10. Magnitude of the image at t’ = 0 of a flat plate of various lengths
with y = 0° for illumination by a pulse.
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Fig. 11. Magnitude of the image at 1" = 0 of a flat plate for various angles
v to the wavefront.

Fig. 14 shows the magnitude of the image at ' = 0 of
a sphere of various radii illuminated by a pulse with AW
= 0.1 and R,/A = 10. For a sphere, the image mainly
consists only of the portion of the surface where the angle
of the surface to the wavefront is small (as expected from
the results for flat plates). Thus, the sphere must be much
larger than the main lobe before the image at ¢’ 0
changes significantly with the sphere size. As seen in Fig.
14, even for R = 5, the shape of the image is about the
same as with much smaller values of R. Furthermore, for
larger values of R, /A, even less of the surface can be
seen. Thus, as before, R, /A must be small if we are to
see and distinguish spheres.

B. Distinguishability
We now consider the distinguishability of common ob-
jects, in particular spheres. Spheres represent a worst case
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Fig. 13. Magnitude of the image at #' = 0 of an edge of angle 180° ~ 2.

since, from Section IV-A, the shape of the magnitude of
the image changes very little with sphere radius. How-
ever, time-of-flight information can also be utilized to im-
prove the distinguishability of spheres. Note that we can
distinguish spheres from flat plates and edges and distin-
guish flat plates and edges of various sizes with much
greater reliability.

We determine the distinguishability of two objects by
calculating the metric distance between the image of these
objects when they are illuminated by a pulse with spec-
trum P(w). Thus, the distance is given by

o= |Jf[pg -

2 1/2
do dt} (56)
€

where S,(8, 1) and S,(9, 1) are the images of object 1 and
2, respectively, and ¢, and ¢, depend on which of the two
cases (as discussed previously) are considered. For the
case 1 where the attenuation versus distance is unknown,

R /A=10

aw =

i
X

|5, o}

o o

-10 -5 0 5 10

Fig. 14. Magnitude of the image at ¢’ = 0 of a sphere of various radii.

¢, and ¢, are given by

1 a = a
e =1a (57)
- a < a,
a,
and
1 a, = a
Cy = a (58)
—_— a; < a
a;
where
R 1/2
a, = HS | 5,50, 1)| a0 dt} ) (59)

For case 2 where both the attenuation versus distance and

frequency are known, we set
Cio = 1.

(60)

Thus, using the normalizing parameters of Section IV-A,
the distance can be expressed as

< = 2
a=| 2L SS ‘Sl(y, ) Siy, t’)‘
Aw c o

dt/ 1/2

— . (61)
E—— "

Since S, ,(y, t') [(52)] have a constant factor of
)\~/2TV, from (61) we can obtain results for the distance
as a function of AW, R, /A, D, and + for flat plates and
edges, and AW, R, /A, and R for spheres, times a constant
factor of )\3/A. (Note that a, ; (and c, ,) can also be cal-
culated from the normalized image without changing the
distance results. )

.dy
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Fig. 15. Metric distance between the image of two spheres when illumi-
nated by a pulse.

Fig. 15 shows the metric distance between two spheres
of various sizes when the spheres are illuminated by a
pulse with bandwidth AW = 0.1. Results are shown for
cases 1 and 2. For case 1 the distance is very small, as
expected from Fig. 14 since the shape of the image is
basically a | sin x/x | for spheres of radius up to 5. Thus,
for this case, E /N, must be very large to distinguish one
sphere from another. For case 2 where the magnitude of
the image is used, the distance is at least ten times larger
than for case 1. Thus, the E/N, required to distinguish
spheres with a given error probability is about 20 dB lower
than for case 1.

V. CONCLUSIONS

We have proposed the use of ultrasonic pulsing com-
bined with parallel signal processing to facilitate the pro-
cess of machine vision, and have explored the fundamen-
tal resolution limitations presented by such a system. The
use of information received along the aperture of a planar
antenna plus time-of-flight data permits an object to be
cataloged in accordance with its three-dimensional acous-
tic signature. As with any imaging system, the ability to
distinguish among signatures of different objects is de-
pendent on the relationship between the extent of the ob-
jects (in degrees) and the size of the receiving aperture (in
wavelengths). With ultrasonics (as opposed to optics), this
becomes an important consideration since the size of the
receiving aperture (again, in wavelengths) is relatively
small. However, our results indicate that, even for objects
constrained in size to be smaller than a beamwidth, the
number of such objects that may be distinguished is quite
large; the nonzero radial range extent of an object helps
in this regard since time-of-flight information is available.
Thus, techniques such as we describe may be an impor-
tant supplement to or substitute for conventional vision
systems. Among the advantages offered are reduced in-
formation processing (faster speed), less clutter (all three
dimensions are used), and total avoidance of the need to
reconstruct accurate visual images (which may include
much unwanted information).

However, ultrasonic reflections tend to be specular, and
only a small portion of an object may thereby be visible
to such a system. Furthermore, the medium (air) tends to
be both lossy and dispersive at ultrasonic frequencies. Fi-
nally, to fully exploit the potential offered by such a sys-
tem, more work needs to be directed along the following
fronts.

1) Useful signal processing algorithms to rapidly ex-
tract relevant information,

2) greater understanding of how objects may be clas-
sified with regard to rotations which may bring the dark
side of an object into view, and

3) experimental verification and feasibility demonstra-
tion of the concepts involved.
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